
直接偏好优化（DPO）

Fred Sun

08/12/2025

Contents

1 引言与动机 3
1.1 RLHF的回顾与局限性 . 3
1.2 DPO的核心思想 . 3

2 从 RLHF到 DPO的数学推导 3
2.1 RLHF目标函数的回顾 . 4
2.2 最优策略的闭式解 . 4
2.3 从最优策略反解奖励函数 . 6
2.4 Bradley-Terry模型回顾 . 6
2.5 代入 Bradley-Terry模型 . 7
2.6 DPO损失函数的推导 . 7

3 DPO损失函数的分析 8
3.1 损失函数的直观理解 . 8
3.2 梯度分析 . 9
3.3 β 参数的作用 . 10
3.4 对比学习角度理解 DPO . 10

3.4.1 DPO损失的另一种形式 . 10
3.4.2 对比学习回顾 . 10
3.4.3 DPO作为对比学习 . 11
3.4.4 与多负样本对比学习的联系 . 12

4 DPO与 RLHF的理论联系 12
4.1 等价性条件 . 12
4.2 DPO的隐式奖励模型 . 13
4.3 KL散度的隐式约束 . 13

5 DPO的适用范围与多步MDP扩展 13
5.1 DPO推导的关键假设 . 13
5.2 多步MDP下 DPO的问题 . 14

5.2.1 多步MDP的偏好建模 . 14
5.2.2 配分函数无法消去 . 15

5.3 基于优势函数的偏好建模 . 15
5.3.1 动机：优势函数作为偏好度量 . 15
5.3.2 基于优势函数的 Bradley-Terry模型 . 16
5.3.3 从优势函数到策略 . 16
5.3.4 代入偏好模型得到损失函数 . 18

5.4 总结：DPO的本质 . 18

1

6 DPO的实现细节 19
6.1 数据准备 . 19
6.2 序列概率的计算 . 19
6.3 数值稳定性 . 20
6.4 参考模型的处理 . 20

7 代码实现 20
7.1 计算序列对数概率 . 20
7.2 DPO损失函数 . 21
7.3 数据预处理 . 23
7.4 完整训练循环 . 24
7.5 使用示例 . 25

8 DPO的变体与扩展 26
8.1 IPO：Identity Preference optimisation . 26
8.2 KTO：Kahneman-Tversky optimisation . 27
8.3 其他变体 . 27

9 DPO vs RLHF：比较与选择 27
9.1 优缺点对比 . 27
9.2 实践中的选择建议 . 27

10 总结 28
10.1 核心公式回顾 . 28
10.2 要点总结 . 28

2

1 引言与动机

1.1 RLHF的回顾与局限性

在上一讲中，我们详细介绍了 RLHF（Reinforcement Learning from Human Feedback）的完整流
程，包括：

1. 监督微调（SFT）：用高质量数据微调预训练模型，得到初始策略 πSFT

2. 奖励模型训练：从人类偏好数据学习奖励函数 rϕ(x, y)

3. PPO优化：用奖励模型的信号，通过 PPO算法优化策略

虽然 RLHF在实践中取得了巨大成功（如 ChatGPT、Claude等），但它存在一些显著的局限
性：

注记 1.1 (RLHF的工程复杂性).

1. 需要维护多个模型：PPO训练阶段需要同时加载 4个模型：

• 策略模型 πθ（Actor，待优化）
• 参考模型 πref（冻结，用于 KL惩罚）
• 奖励模型 rϕ（冻结，用于计算奖励）
• 值函数模型 Vψ（Critic，待优化）

这对 GPU内存提出了很高要求。

2. 训练不稳定：PPO涉及多个超参数（裁剪系数 ϵ、KL惩罚系数 β、GAE参数 λ等），调参
困难。

3. 采样效率低：PPO是在线算法，需要不断用当前策略采样新数据，无法充分利用离线偏好
数据。

4. 实现复杂：需要实现 GAE、裁剪目标、值函数训练等多个组件，代码复杂度高。

1.2 DPO的核心思想

直接偏好优化（Direct Preference optimisation, DPO）的核心思想是：

绕过显式的奖励建模和强化学习，直接从偏好数据优化策略。

DPO的关键洞察是：在 RLHF的目标函数下，最优策略有一个闭式解，可以将奖励函数表示
为策略的函数。这样，我们可以将 Bradley-Terry偏好模型中的奖励替换为策略的函数，从而得
到一个直接作用于策略参数的损失函数。

注记 1.2 (DPO的优势).

• 简单：只需要两个模型（策略模型和参考模型），无需奖励模型和值函数

• 稳定：本质上是监督学习，训练稳定，易于调参

• 高效：可以直接在离线偏好数据上训练，无需在线采样

• 理论等价：在一定条件下，DPO的最优解与 RLHF的最优解等价

2 从 RLHF到 DPO的数学推导

本节是 DPO的核心，我们将从 RLHF的目标函数出发，一步步推导出 DPO的损失函数。

3

2.1 RLHF目标函数的回顾

回顾 RLHF中 PPO优化的目标：在最大化奖励的同时，限制策略不要偏离参考策略太远。

定义 2.1 (RLHF优化目标).

max
πθ

Ex∼DEy∼πθ(·|x) [r(x, y)]− β · Ex∼D [KL(πθ(·|x)∥πref(·|x))] (1)

其中：

• r(x, y)：奖励函数（由奖励模型给出）

• πref：参考策略（通常是 SFT模型）

• β > 0：KL惩罚系数，控制策略偏离程度

• D：prompt的分布

将目标函数展开，对于固定的 x：

J(πθ;x) = Ey∼πθ(·|x)[r(x, y)]− β · KL(πθ(·|x)∥πref(·|x))

=
∑
y

πθ(y|x)r(x, y)− β
∑
y

πθ(y|x) log πθ(y|x)
πref(y|x)

(2)

2.2 最优策略的闭式解

接下来我们求解最优策略 π∗。这是 DPO推导的关键步骤。

定理 2.1 (最优策略的闭式解). 对于优化目标 eq. (1)，最优策略为：

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
(3)

其中配分函数（归一化常数）为：

Z(x) =
∑
y

πref(y|x) exp
(
1

β
r(x, y)

)
(4)

4

详细证明

Proof. 我们使用变分法求解这个约束优化问题。
步骤 1：写出拉格朗日函数
策略 πθ(·|x)是一个概率分布，需要满足归一化约束

∑
y πθ(y|x) = 1。

拉格朗日函数为：

L(πθ, λ) =
∑
y

πθ(y|x)r(x, y)− β
∑
y

πθ(y|x) log πθ(y|x)
πref(y|x)

+ λ

(
1−

∑
y

πθ(y|x)

)

步骤 2：对 πθ(y|x)求导
对于每个 y，对 πθ(y|x)求偏导：

∂L
∂πθ(y|x)

= r(x, y)− β

(
log πθ(y|x)

πref(y|x)
+ 1

)
− λ

令导数为零：

r(x, y)− β log πθ(y|x)
πref(y|x)

− β − λ = 0

步骤 3：解出 πθ(y|x)
整理得：

log πθ(y|x)
πref(y|x)

=
1

β
(r(x, y)− β − λ)

πθ(y|x)
πref(y|x)

= exp
(
r(x, y)− β − λ

β

)
πθ(y|x) = πref(y|x) exp

(
r(x, y)

β

)
exp

(
−1− λ

β

)
步骤 4：利用归一化条件确定常数
由
∑

y πθ(y|x) = 1：

∑
y

πref(y|x) exp
(
r(x, y)

β

)
exp

(
−1− λ

β

)
= 1

exp
(
−1− λ

β

)
=

1∑
y πref(y|x) exp

(
r(x,y)
β

)
定义配分函数：

Z(x) =
∑
y

πref(y|x) exp
(
r(x, y)

β

)
则：

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
r(x, y)

β

)

注记 2.1 (最优策略的直观理解).

5

• 最优策略是参考策略的"能量调整"版本

• 奖励高的输出 y概率被放大（乘以 exp(r/β)）

• 奖励低的输出 y概率被缩小

• β 控制调整的幅度：β 小时调整激进，β 大时调整保守

• 当 β → ∞时，π∗ → πref（完全保守）

• 当 β → 0时，π∗趋向于只选择奖励最高的输出

2.3 从最优策略反解奖励函数

定理 2.1给出了已知奖励，求最优策略的关系。DPO的关键步骤是反过来：从策略表示奖励。

定理 2.2 (奖励函数的隐式表示). 如果 π∗是优化目标 eq. (1)的最优策略，则奖励函数可以表示为：

r(x, y) = β log π∗(y|x)
πref(y|x)

+ β logZ(x) (5)

Proof. 从最优策略的表达式 eq. (3)出发：

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
r(x, y)

β

)
两边取对数：

logπ∗(y|x) = − logZ(x) + logπref(y|x) +
r(x, y)

β

解出 r(x, y)：

r(x, y) = β logπ∗(y|x)− β logπref(y|x) + β logZ(x)

= β log π∗(y|x)
πref(y|x)

+ β logZ(x)

注记 2.2 (隐式奖励的意义). 公式 eq. (5)表明：

• 奖励可以用策略的对数概率比来表示

• β log π∗(y|x)
πref(y|x) 衡量最优策略相对于参考策略对输出 y的"偏好程度"

• β logZ(x)是一个只依赖于 x的常数项

关键洞察：在比较两个输出时，β logZ(x)会被消去。

2.4 Bradley-Terry模型回顾

在上一讲中，我们介绍了 Bradley-Terry模型。这里简要回顾其核心内容。

定义 2.2 (Bradley-Terry模型). 假设每个输出 y 有一个潜在的质量分数 r(x, y) ∈ R。当人类比较
两个输出 y1和 y2时，偏好 y1的概率为：

P (y1 ≻ y2|x) =
exp(r(x, y1))

exp(r(x, y1)) + exp(r(x, y2))
= σ(r(x, y1)− r(x, y2)) (6)

其中 σ(z) = 1
1+e−z 是 sigmoid函数。

6

该模型的直观含义是：

• 奖励差 r(x, y1)− r(x, y2)越大，y1被偏好的概率越高

• 当 r(x, y1) = r(x, y2)时，两者被偏好的概率各为 50%

• Sigmoid函数将奖励差映射到概率空间 (0, 1)

关于 Bradley-Terry模型的详细推导（包括从随机效用模型的推导），请参见上一讲的第 10.2
节。

2.5 代入 Bradley-Terry模型

现在将隐式奖励代入 Bradley-Terry偏好模型。

定理 2.3 (DPO的偏好概率). 将隐式奖励 eq. (5)代入 Bradley-Terry模型，得到：

P (yw ≻ yl|x) = σ

(
β log π∗(yw|x)

πref(yw|x)
− β log π∗(yl|x)

πref(yl|x)

)
(7)

Proof. 代入隐式奖励表达式：

r(x, yw)− r(x, yl) =

(
β log π∗(yw|x)

πref(yw|x)
+ β logZ(x)

)
−
(
β log π∗(yl|x)

πref(yl|x)
+ β logZ(x)

)
= β log π∗(yw|x)

πref(yw|x)
− β log π∗(yl|x)

πref(yl|x)

注意 β logZ(x)项被消去了。
代入 Sigmoid：

P (yw ≻ yl|x) = σ

(
β log π∗(yw|x)

πref(yw|x)
− β log π∗(yl|x)

πref(yl|x)

)

注记 2.3 (配分函数的消去). 配分函数 Z(x)的消去是 DPO能够工作的关键。这意味着：

• 我们不需要计算难以处理的配分函数

• 偏好概率只依赖于策略在两个具体输出上的概率比

• 这使得直接优化策略成为可能

2.6 DPO损失函数的推导

现在我们可以得到 DPO的损失函数。

定义 2.3 (DPO损失函数). 给定偏好数据集 D = {(x(i), y(i)w , y
(i)
l)}Ni=1，DPO的损失函数为负对数

似然：
期望形式：

LDPO(θ) = −E(x,yw,yl)∼D

[
logσ

(
β log πθ(yw|x)

πref(yw|x)
− β log πθ(yl|x)

πref(yl|x)

)]
(8)

7

样本估计形式：

L̂DPO(θ) = − 1

N

N∑
i=1

logσ
(
β log πθ(y

(i)
w |x(i))

πref(y
(i)
w |x(i))

− β log
πθ(y

(i)
l |x(i))

πref(y
(i)
l |x(i))

)
(9)

为了简化表示，定义隐式奖励：

定义 2.4 (隐式奖励).

r̂θ(x, y) = β log πθ(y|x)
πref(y|x)

(10)

则 DPO损失可简写为：

LDPO(θ) = −E(x,yw,yl)∼D [logσ (r̂θ(x, yw)− r̂θ(x, yl))] (11)

注记 2.4 (DPO损失的结构). DPO损失与奖励模型损失结构完全相同：

LRM(ϕ) = −E [logσ(rϕ(x, yw)− rϕ(x, yl))]

LDPO(θ) = −E [logσ(r̂θ(x, yw)− r̂θ(x, yl))]

区别在于：

• 奖励模型：rϕ是显式参数化的神经网络

• DPO：r̂θ = β log(πθ/πref)是策略的隐式函数

3 DPO损失函数的分析

3.1 损失函数的直观理解

注记 3.1 (DPO在做什么). 直观地说，DPO损失函数在做以下事情：

1. 计算策略相对于参考策略的"偏好程度"：r̂θ(x, y) = β log πθ(y|x)
πref(y|x)

2. 要求 yw 的隐式奖励高于 yl：r̂θ(x, yw) > r̂θ(x, yl)

3. 通过 Sigmoid和 log构造平滑的损失函数

最小化 DPO损失会：

• 增加 πθ(yw|x)相对于 πref(yw|x)的比值

• 减少 πθ(yl|x)相对于 πref(yl|x)的比值

例 3.1 (损失值的计算). 假设 β = 0.1，对于某个样本：

• logπθ(yw|x) = −10，logπref(yw|x) = −12

• logπθ(yl|x) = −15，logπref(yl|x) = −14

计算隐式奖励：

r̂θ(x, yw) = 0.1× (−10− (−12)) = 0.1× 2 = 0.2

r̂θ(x, yl) = 0.1× (−15− (−14)) = 0.1× (−1) = −0.1

奖励差：∆r̂ = 0.2− (−0.1) = 0.3
损失：− logσ(0.3) = − log(0.574) ≈ 0.555
这个损失值表示模型已经学会偏好 yw，但还可以进一步优化。

8

3.2 梯度分析

理解 DPO的梯度对于理解其训练动态至关重要。

定理 3.1 (DPO损失的梯度). 对于单个样本 (x, yw, yl)，DPO损失关于参数 θ的梯度为：

∇θLDPO = −β · (1− σ(∆r̂))︸ ︷︷ ︸
权重

· (∇θ logπθ(yw|x)−∇θ logπθ(yl|x))︸ ︷︷ ︸
方向

(12)

其中 ∆r̂ = r̂θ(x, yw)− r̂θ(x, yl)。

详细推导

Proof. 设 ∆r̂ = r̂θ(x, yw)− r̂θ(x, yl) = β
(

log πθ(yw|x)
πref(yw|x) − log πθ(yl|x)

πref(yl|x)

)
损失为 L = − logσ(∆r̂)。
步骤 1：对 ∆r̂求导
由链式法则：

∂L
∂∆r̂

= − 1

σ(∆r̂)
· σ(∆r̂)(1− σ(∆r̂))

= −(1− σ(∆r̂))

步骤 2：计算 ∇θ∆r̂

∆r̂ = β logπθ(yw|x)− β logπref(yw|x)− β logπθ(yl|x) + β logπref(yl|x)

由于 πref不依赖于 θ：

∇θ∆r̂ = β∇θ logπθ(yw|x)− β∇θ logπθ(yl|x)
= β (∇θ logπθ(yw|x)−∇θ logπθ(yl|x))

步骤 3：组合

∇θL =
∂L
∂∆r̂

· ∇θ∆r̂

= −(1− σ(∆r̂)) · β (∇θ logπθ(yw|x)−∇θ logπθ(yl|x))

注记 3.2 (梯度的直观理解). 梯度公式 eq. (12)有两个重要组成部分：
1. 方向：∇θ logπθ(yw|x)−∇θ logπθ(yl|x)

• 梯度下降会增加 logπθ(yw|x)（提高好输出的概率）

• 同时减少 logπθ(yl|x)（降低差输出的概率）

2. 权重：(1− σ(∆r̂))

• 当模型已经正确排序（∆r̂大）时，权重接近 0，梯度小

• 当模型排序错误（∆r̂小或为负）时，权重大，梯度大

• 这是一种自适应机制：模型在困难样本上学习更多

9

注记 3.3 (与监督学习的对比). 标准的监督微调（SFT）梯度为：

∇θLSFT = −∇θ logπθ(y|x)

DPO梯度的特点：

1. 对比学习：同时考虑正样本 yw 和负样本 yl，而非只看正样本

2. 自适应权重：(1− σ(∆r̂))根据当前预测调整学习强度

3. 相对优化：优化的是 yw 相对于 yl 的概率比，而非绝对概率

3.3 β 参数的作用

注记 3.4 (β 的多重角色). 参数 β 在 DPO中扮演多个角色：
1. 控制隐式 KL约束的强度

• 大 β：对偏离参考策略的惩罚大，策略变化保守

• 小 β：惩罚小，策略可以大幅偏离参考策略

2. 缩放奖励差异

• 隐式奖励 r̂θ = β log(πθ/πref)

• β 决定了 log概率比转换为奖励的比例

3. 影响优化难度

• 大 β：Sigmoid输入范围大，梯度可能较小

• 小 β：Sigmoid输入范围小，需要更精细的区分

典型取值：β ∈ [0.1, 0.5]

3.4 对比学习角度理解 DPO

DPO的损失函数与对比学习（Contrastive Learning）有着深刻的联系。本节从对比学习的视角重
新理解 DPO。

3.4.1 DPO损失的另一种形式

将正样本（被偏好）记为 y+，负样本（不被偏好）记为 y−，DPO损失可以写成：

LDPO = −E(y+,y−,x)∼D
[
logP [y+ ≻ y−]

]
= −E(y+,y−,x)∼D

log
exp

(
β log π(y+|x)

πref(y+|x)

)
exp

(
β log π(y+|x)

πref(y+|x)

)
+ exp

(
β log π(y−|x)

πref(y−|x)

)
 (13)

3.4.2 对比学习回顾

定义 3.1 (对比学习损失). 对比学习的目标是学习一种表示，使得相似的样本彼此接近，而不相
似的样本彼此远离。
对于一个锚样本 x（anchor），假设有：

• 一个正样本 x+（例如，同一图像的数据增强版本）

• 一组负样本 {x−
i }mi=1（例如，其他图像）

10

为了学习一个编码器 f，对比学习最小化以下损失（InfoNCE loss）：

ℓf (x, x+, {x−
i }

m
i=1) = − log exp(f(x)⊤f(x+))

exp(f(x)⊤f(x+)) +
∑m

i=1 exp(f(x)⊤f(x−
i))

(14)

其中 f(x)⊤f(x+)是两个表示的点积，可视为相似性分数。

注记 3.5 (对比学习的直观理解). InfoNCE损失的效果是：

• 拉近锚样本与正样本：增大 f(x)⊤f(x+)

• 推远锚样本与负样本：减小 f(x)⊤f(x−
i)

分母中的求和起到归一化作用，使得正样本的相似度在所有样本中占比更高。

3.4.3 DPO作为对比学习

命题 3.2 (DPO是一种对比学习). DPO可以看成是正负样本数量都为 1的对比学习，其中：

• 锚样本：策略 π(·|x)

• 正样本：被偏好的输出 y+

• 负样本：不被偏好的输出 y−

• 相似性分数：β log π(y|x)
πref(y|x)（隐式奖励）

隐式奖励 β log π(y|x)
πref(y|x) 衡量的是策略对输出 y的"偏好程度"——值越大说明策略相对于参考

策略更倾向于生成 y。

Proof. 对比 DPO损失 eq. (13)和 InfoNCE损失 eq. (14)：
InfoNCE（m = 1个负样本）：

ℓ = − log exp(s+)
exp(s+) + exp(s−) (15)

其中 s+ = f(x)⊤f(x+)，s− = f(x)⊤f(x−)。
DPO：

LDPO = − log exp(r̂+)
exp(r̂+) + exp(r̂−) (16)

其中 r̂+ = β log π(y+|x)
πref(y+|x)，r̂− = β log π(y−|x)

πref(y−|x)。
两者结构完全相同，只是相似性分数的定义不同。

注记 3.6 (对比学习视角的启示). 从对比学习的角度理解 DPO：

1. 目标：让策略的"表示"（通过隐式奖励衡量）更接近正样本、远离负样本

2. 效果：最小化 DPO损失会：

• 增大 π(y+|x)相对于 πref(y
+|x)的比值（拉近正样本）

• 减小 π(y−|x)相对于 πref(y
−|x)的比值（推远负样本）

3. 对比对象：与传统对比学习不同，DPO对比的不是样本的向量表示，而是策略对不同输出
的概率比

11

3.4.4 与多负样本对比学习的联系

注记 3.7 (扩展到多个负样本).
标准 DPO使用一个正样本和一个负样本。自然的扩展是使用多个负样本：

LDPO-multi = − log exp(r̂(x, y+))
exp(r̂(x, y+)) +

∑m
i=1 exp(r̂(x, y−i))

(17)

这类似于 InfoNCE使用更多负样本来提供更强的对比信号。实践中，可以通过从策略采样多
个输出并标注偏好来构造多负样本数据。

注记 3.8 (对比学习的温度参数).
在对比学习中，通常有一个温度参数 τ 控制分布的锐度：

ℓ = − log exp(s+/τ)
exp(s+/τ) + exp(s−/τ) (18)

在 DPO中，β 扮演类似的角色：

• 小 β：分布更锐（sharp），对偏好差异更敏感

• 大 β：分布更平（soft），对偏好差异更容忍

这与对比学习中温度参数的作用一致。

概念 对比学习 DPO
锚样本 输入 x 策略 π(·|x)
正样本 增强样本 x+ 偏好输出 y+

负样本 其他样本 x− 非偏好输出 y−

相似性度量 表示点积 f(x)⊤f(x′) 隐式奖励 β log π(y|x)
πref(y|x)

温度参数 τ 1/β（或 β 本身）
优化目标 学习好的表示 学习好的策略

表格 1: 对比学习与 DPO的对应关系

4 DPO与 RLHF的理论联系

4.1 等价性条件

DPO的推导基于一个关键假设：我们在用最优策略 π∗的形式来参数化当前策略 πθ。

定理 4.1 (DPO与 RLHF的等价性). 如果以下条件满足：

1. 偏好数据由 Bradley-Terry模型生成

2. 奖励模型完美拟合真实奖励

3. 策略优化达到全局最优

则 DPO的最优解与 RLHF的最优解相同。

注记 4.1 (实践中的差异). 在实践中，这些理想条件不完全满足：

• 人类偏好可能不完全符合 Bradley-Terry模型

• 神经网络的表达能力有限，不能完美拟合

• 优化可能陷入局部最优

因此，DPO和 RLHF在实践中可能给出不同的结果。实验表明，在许多任务上 DPO的效果
与 RLHF相当甚至更好。

12

4.2 DPO的隐式奖励模型

虽然 DPO不显式训练奖励模型，但训练好的 DPO策略隐含了一个奖励函数。

定义 4.1 (从 DPO提取奖励). 给定训练好的 DPO策略 πθ，隐式奖励为：

r̂(x, y) = β log πθ(y|x)
πref(y|x)

(19)

这个奖励可以用于：

• 评估和比较不同输出的质量

• 作为其他任务的奖励信号

• 分析模型学到了什么偏好

注记 4.2 (隐式奖励的特点).

• 相对性：隐式奖励是相对于参考策略定义的

• 无配分函数：不需要计算归一化常数

• 与策略绑定：奖励直接由策略参数决定

4.3 KL散度的隐式约束

命题 4.2 (DPO隐式包含 KL约束). DPO的损失函数隐式地约束策略不要偏离参考策略太远。具
体地，隐式奖励可以改写为：

r̂θ(x, y) = β logπθ(y|x)− β logπref(y|x) (20)

最大化隐式奖励等价于最大化 logπθ(y|x)，同时受到 −β logπref(y|x)的锚定。

注记 4.3 (参考策略的作用). 参考策略 πref在 DPO中起到关键作用：

1. 提供基准：隐式奖励衡量的是相对于 πref的改进

2. 防止崩溃：没有参考策略，模型可能学到退化的解

3. 保持能力：πref通常是 SFT模型，保证基本的语言能力

实践建议：πref应该是质量合理的模型（如 SFT后的模型），不应该是随机初始化的模型。

5 DPO的适用范围与多步MDP扩展

前面我们推导了 DPO的损失函数，但这个推导有一个重要的前提假设：单步MDP。本节将分
析 DPO在多步MDP下的问题，并介绍基于优势函数的替代方案。

5.1 DPO推导的关键假设

回顾 DPO推导的关键步骤：我们将隐式奖励代入 Bradley-Terry模型后，配分函数 Z(x)被消去
了。

r(x, yw)− r(x, yl) = β log π∗(yw|x)
πref(yw|x)

− β log π∗(yl|x)
πref(yl|x)

+ β logZ(x)− β logZ(x)︸ ︷︷ ︸
=0

(21)

这个消去能够成立，是因为在大语言模型场景下：

13

• 两个回答 yw 和 yl 对应同一个输入 x

• 因此它们共享同一个配分函数 Z(x)

• 相减后配分函数消去

注记 5.1 (DPO的单步MDP假设).
DPO的推导基于大语言模型的特殊结构，本质上是一个单步MDP（或称为Contextual Bandit）：

• 状态：输入 prompt x

• 动作：完整的输出序列 y（视为一个整体动作）

• 奖励：序列级别的奖励 r(x, y)

在这个视角下，生成过程不是逐 token的多步决策，而是一次性选择整个输出序列。

5.2 多步MDP下 DPO的问题

现在考虑传统强化学习场景下的多步MDP，看看 DPO的推导会出现什么问题。

5.2.1 多步MDP的偏好建模

在多步MDP中，我们比较的是两条轨迹（trajectory），而非两个单步动作。

定义 5.1 (轨迹偏好). 设两条轨迹为：

σ1 =
(
(s10, a

1
0), (s

1
1, a

1
1), . . . , (s

1
T1−1, a

1
T1−1)

)
(22)

σ2 =
(
(s20, a

2
0), (s

2
1, a

2
1), . . . , (s

2
T2−1, a

2
T2−1)

)
(23)

人类偏好标签 y ∈ {0, 1, 0.5}表示：

• y = 1：偏好 σ1（即 σ1 ≻ σ2）

• y = 0：偏好 σ2（即 σ2 ≻ σ1）

• y = 0.5：同等偏好

定义 5.2 (基于累积奖励的 Bradley-Terry模型). 在多步MDP中，假设人类偏好一条轨迹的概率与
该轨迹的累积折扣奖励的指数成正比。基于 Bradley-Terry模型：

P ∗[σ1 ≻ σ2] =
exp

(∑
σ1 γtr∗(s1t , a

1
t)
)

exp
(∑

σ1 γtr∗(s1t , a
1
t)
)
+ exp

(∑
σ2 γtr∗(s2t , a

2
t)
) (24)

其中 r∗(s, a)是最优奖励函数，γ 是折扣因子。

注记 5.2 (与大语言模型 RLHF的区别). 多步MDP与大语言模型 RLHF的关键区别：

1. 多步 vs单步：多步 MDP需要在每个时间步做决策，而 LLM可以视为一次性生成整个序
列

2. 不同起始状态：多步MDP中两条轨迹的起始状态 s10和 s20可能不同，而 LLM中两个回答
共享同一个 prompt x

3. 轨迹长度可变：两条轨迹的长度 T1和 T2可能不同

14

5.2.2 配分函数无法消去

现在尝试在多步MDP下应用 DPO的推导思路。
多步MDP的优化目标（带 KL约束）为：

max
π

Eπ

[∞∑
t=0

γt
(
r(st, at)− β log π(at|st)

πref(at|st)

)]
(25)

通过类似的推导（利用拉格朗日乘子法和 KKT条件），可以得到最优策略和最优奖励函数的
关系：

r∗(st, at) = β log π∗(at|st)
πref(at|st)

+ β logZ(st) (26)

其中 Z(st)是依赖于状态 st的配分函数。

定理 5.1 (多步MDP下配分函数无法消去). 将隐式奖励 (26)代入多步 Bradley-Terry模型 (24)：

P ∗[σ1 ≻ σ2] =
exp

(∑
σ1 γt log π∗(a1t |s1t)

πref(a
1
t |s1t)

+
∑

σ1 γt logZ(s1t)
)

exp (
∑

σ1 · · ·) + exp
(∑

σ2 γt log π∗(a2t |s2t)
πref(a

2
t |s2t)

+
∑

σ2 γt logZ(s2t)
) (27)

由于两条轨迹经过的状态序列不同（s1t ̸= s2t），配分函数项：∑
σ1

γt logZ(s1t) ̸=
∑
σ2

γt logZ(s2t) (28)

无法消去。因此，不能像 DPO那样得到一个只依赖于策略的损失函数。

注记 5.3 (为什么单步MDP可以消去？).
回顾单步MDP（LLM场景）：

• 两个输出 yw 和 yl 共享同一个输入 x

• 配分函数只依赖于 x：Z(x)

• 相减后：β logZ(x)− β logZ(x) = 0

而在多步MDP中：

• 两条轨迹经过不同的状态序列

• 每个状态有不同的配分函数 Z(st)

• 无法消去

5.3 基于优势函数的偏好建模

既然传统强化学习场景下 DPO的推导方式不适用，研究者们提出了另一种思路：用优势函数代
替奖励函数来建模人类偏好。

5.3.1 动机：优势函数作为偏好度量

注记 5.4 (为什么考虑优势函数？). 原本的 Bradley-Terry模型使用奖励函数 r(s, a)来衡量人类偏
好，但从奖励函数并不能直接得到最优策略。那么是否可以用一些与策略直接相关的量来衡量
人类偏好？
强化学习中与策略挂钩的值有：

• 动作价值函数 Qπ(s, a)：在状态 s采取动作 a，然后按策略 π行动的期望回报

15

• 优势函数 Aπ(s, a) = Qπ(s, a)− V π(s)：动作 a相对于平均水平的优势

最优策略可以通过这些值导出：

π∗(a|s) = arg max
π

Qπ(s, a) = arg max
π

Aπ(s, a) (29)

优势函数 A(s, a)是一个很好的衡量人类偏好的度量：它直接反映了这个动作比平均水平好
多少。

例 5.1 (优势函数 vs奖励函数作为偏好度量). 考虑一个寻路环境：智能体每走一步得到 −1的奖
励，只有到达目标点才会得到 +100的奖励。
比较两条轨迹片段：

• 轨迹 S：智能体在向目标点靠近

• 轨迹 O：智能体在远离目标点

用奖励函数衡量： ∑
S

rSt = −1− 1 = −2 =
∑
O

rOt (30)

两条轨迹的累积奖励相同，偏好概率是一致的（50%-50%）。

用优势函数衡量：

• 轨迹 S的累积优势
∑

S A(st, at)更大（因为动作在朝正确方向走）

• 轨迹 O的累积优势更小或为负（因为动作在朝错误方向走）

显然，用优势函数能更好地区分这两条轨迹的质量。

5.3.2 基于优势函数的 Bradley-Terry模型

定义 5.3 (基于优势函数的偏好模型). 使用最优优势函数 A∗(s, a)构建 Bradley-Terry偏好模型：

P ∗[σ1 ≻ σ2] =
exp

(∑
σ1 γtA∗(s1t , a

1
t)
)

exp
(∑

σ1 γtA∗(s1t , a
1
t)
)
+ exp

(∑
σ2 γtA∗(s2t , a

2
t)
) (31)

这里用累积折扣优势代替累积折扣奖励。

注记 5.5 (优势函数的优点).

• 优势函数直接反映动作的相对好坏

• 不需要配分函数（优势函数本身就是相对于基线的差值）

• 可以直接与策略建立联系

5.3.3 从优势函数到策略

关键问题是：能否像 DPO那样，将优势函数表示为策略的函数，从而直接学习策略？

定理 5.2 (优势函数与最优策略的关系). 在 Behavior-Regularised RL（通常是 offline RL的范畴）的
设定下，最优优势函数和最优策略有直接的等式关系。
具体地，对于带 KL约束的优化目标：

max
π

Eπ

[∞∑
t=0

γt
(
r(st, at)− β log π(at|st)

πref(at|st)

)]
(32)

16

利用拉格朗日乘子法和 KKT条件求解，可以得到：

π∗(a|s) = πref(a|s) exp
(
A∗(s, a)

β

)
(33)

A∗(s, a) = β log π∗(a|s)
πref(a|s)

(34)

证明思路

Proof. 这个结论可以通过软 Q-learning（Soft Q-Learning）或最大熵强化学习（Maximum
Entropy RL）的框架推导。
步骤 1：定义软值函数和软 Q函数。
在带熵正则化的MDP中，定义软值函数：

V soft(s) = Eπ

[∞∑
t=0

γt (r(st, at) + βH(π(·|st)))
∣∣∣s0 = s

]
(35)

软 Q函数：
Qsoft(s, a) = r(s, a) + γEs′∼P (·|s,a)[V

soft(s′)] (36)

步骤 2：最优策略的形式。
在软 Q-learning中，最优策略为：

π∗(a|s) = exp(Q∗(s, a)/β)∑
a′ exp(Q∗(s, a′)/β)

=
1

Z(s)
exp

(
Q∗(s, a)

β

)
(37)

其中 Z(s) =
∑

a′ exp(Q∗(s, a′)/β)。
步骤 3：引入参考策略。
当有参考策略 πref时，KL正则化项变为：

− β KL(π∥πref) = βEπ[logπref(a|s)]− βEπ[logπ(a|s)] (38)

相应的最优策略变为：

π∗(a|s) ∝ πref(a|s) exp
(
Q∗(s, a)

β

)
(39)

步骤 4：优势函数的关系。
定义优势函数 A∗(s, a) = Q∗(s, a)− V ∗(s)。由于 V ∗(s)不依赖于 a，在归一化后：

π∗(a|s) = πref(a|s) exp
(
A∗(s, a)

β

)
· 1

Z ′(s)
(40)

取对数并整理，得到：

A∗(s, a) = β log π∗(a|s)
πref(a|s)

+ β logZ ′(s) (41)

关键观察：对于优势函数，由于 Ea∼π∗ [A∗(s, a)] = 0（优势函数的定义性质），配分函数
项 β logZ ′(s)被吸收到基线中。
在适当的归一化下，我们得到：

A∗(s, a) = β log π∗(a|s)
πref(a|s)

(42)

17

注记 5.6 (关键区别). 比较奖励函数和优势函数的隐式表示：

r∗(s, a) = β log π∗(a|s)
πref(a|s)

+ β logZ(s) （含配分函数） (43)

A∗(s, a) = β log π∗(a|s)
πref(a|s)

（无配分函数） (44)

优势函数的表示不含配分函数，这是因为优势函数本身已经是相对于状态值 V (s) 的差值，
配分函数被自然地消去了。

5.3.4 代入偏好模型得到损失函数

将隐式优势函数 eq. (34)代入基于优势函数的 Bradley-Terry模型 eq. (31)：

P ∗[σ1 ≻ σ2] =
exp

(∑
σ1 γtA∗(s1t , a

1
t)
)

exp
(∑

σ1 γtA∗(s1t , a
1
t)
)
+ exp

(∑
σ2 γtA∗(s2t , a

2
t)
)

=
exp

(∑
σ1 γtβ log π∗(a1t |s1t)

πref(a
1
t |s1t)

)
exp

(∑
σ1 γtβ log π∗(a1t |s1t)

πref(a
1
t |s1t)

)
+ exp

(∑
σ2 γtβ log π∗(a2t |s2t)

πref(a
2
t |s2t)

) (45)

定理 5.3 (基于优势函数的 DPO损失（多步MDP版本）). 对于多步MDP，使用优势函数建模偏
好，可以得到类似 DPO的损失函数：

L(θ) = −E(σ1,σ2,y)∼D
[
y logPθ[σ1 ≻ σ2] + (1− y) logPθ[σ2 ≻ σ1]

]
(46)

其中：

Pθ[σ
1 ≻ σ2] = σ

(∑
σ1

γtβ log πθ(a
1
t |s1t)

πref(a1t |s1t)
−
∑
σ2

γtβ log πθ(a
2
t |s2t)

πref(a2t |s2t)

)
(47)

注记 5.7 (回到大语言模型场景). 在大语言模型的单步MDP场景下，上式简化为：

• 轨迹变成单个输出：σ → y

• 状态变成 prompt：s → x

• 无需折扣：γt = 1

得到：

P ∗[y1 ≻ y2|x] = σ

(
β log π∗(y1|x)

πref(y1|x)
− β log π∗(y2|x)

πref(y2|x)

)
(48)

这正是我们之前推导的 DPO公式。

5.4 总结：DPO的本质

注记 5.8 (DPO的本质理解). 通过本节的分析，我们可以更深入地理解 DPO：
DPO的本质是将 RLHF中 Bradley-Terry模型的人类偏好度量从奖励函数换成了优势函数。
具体地：

• 传统 RLHF：用奖励函数 r(x, y)衡量偏好→需要先训练奖励模型，再用 RL优化

• DPO：用优势函数 A(x, y) = β log π(y|x)
πref(y|x) 衡量偏好→直接优化策略

这个转换之所以有效，是因为：

18

1. 优势函数可以直接用策略表示（不含配分函数）

2. 在单步MDP下，优势函数的表示是精确的

3. 优势函数本身就是一个好的偏好度量（反映动作相对于基线的优劣）

注记 5.9 (多步 MDP的挑战). 虽然基于优势函数的方法在理论上可以扩展到多步 MDP，但实践
中仍有挑战：

• 需要处理变长轨迹

• 折扣因子 γ 的影响

• 轨迹级别的偏好标注成本高

这也是为什么 DPO主要在大语言模型（可以视为单步MDP）场景下使用的原因。

6 DPO的实现细节

6.1 数据准备

注记 6.1 (偏好数据格式). DPO需要的数据格式为三元组 (x, yw, yl)：

• x：输入 prompt

• yw：人类偏好的输出（chosen）

• yl：人类不偏好的输出（rejected）

数据来源可以是：

• 人工标注的偏好数据

• 从现有模型采样，然后人工比较

• 使用更强的模型（如 GPT-4）进行自动标注

6.2 序列概率的计算

在语言模型中，输出 y = (y1, y2, . . . , yT)是一个 token序列。

定义 6.1 (序列对数概率). 序列的对数概率是各 token条件对数概率之和：

logπθ(y|x) =
T∑
t=1

logπθ(yt|x, y<t) (49)

其中 y<t = (y1, . . . , yt−1)是前 t− 1个 token。

注记 6.2 (实现注意事项).

• 需要正确处理 attention mask，只计算 response部分的概率

• prompt部分的 token不计入概率计算

• 对于 padding token，需要 mask掉

19

6.3 数值稳定性

注记 6.3 (避免数值问题). DPO计算中可能遇到的数值问题：
1. Log概率可能很小

• 长序列的 logπ(y|x)可能是很大的负数（如 -500）

• 直接计算 exp会下溢

• 解决：始终在 log空间计算，避免转换为概率

2. Sigmoid的输入可能很大

• 当 |∆r̂|很大时，σ接近 0或 1

• logσ可能产生数值问题

• 解决：使用 logsigmoid函数，它在数值上更稳定

3. 概率比可能极端

• log(πθ/πref)可能很大或很小

• 解决：可以对隐式奖励进行裁剪

6.4 参考模型的处理

注记 6.4 (参考模型的实现). 参考模型 πref在训练过程中保持冻结：

• 不计算梯度，使用 torch.no_grad()

• 可以与训练模型共享权重初始化

• 内存优化：可以使用半精度（fp16/bf16）

内存占用：DPO需要同时加载两个模型（πθ 和 πref），但仍比 RLHF的 4个模型少很多。

7 代码实现

7.1 计算序列对数概率

Listing 1: 计算序列对数概率
1 import torch
2 import torch.nn.functional as F
3

4 def compute_log_probs(model, input_ids , attention_mask , labels):
5 """
6 计算给定序列的对数概率
7

8 参数：
9 model: 语言模型

10 input_ids: 输入 token ids，形状 [batch_size , seq_len]
11 attention_mask: 注意力掩码，形状 [batch_size , seq_len]
12 labels: 标签（即 input_ids本身，用于计算 loss的目标）
13 形状 [batch_size , seq_len]， prompt部分设为 -100
14

15 返回：
16 log_probs: 每个序列的总对数概率，形状 [batch_size]
17 """

20

18 # 获取模型输出的 logits
19 outputs = model(input_ids=input_ids , attention_mask=attention_mask)
20 logits = outputs.logits # [batch_size , seq_len, vocab_size]
21

22 # Shift: 预测下一个 token
23 # logits: 用前T-1个位置预测后T-1个 token
24 shift_logits = logits[:, :-1, :] # [batch_size , seq_len -1, vocab_size]
25 shift_labels = labels[:, 1:] # [batch_size , seq_len -1]
26

27 # 计算每个 token的对数概率
28 log_probs_all = F.log_softmax(shift_logits , dim=-1) # [batch_size ,

seq_len -1, vocab_size]
29

30 # 获取实际 token的对数概率
31 # 使用 gather选取对应 token的概率
32 log_probs_token = torch.gather(
33 log_probs_all ,
34 dim=-1,
35 index=shift_labels.unsqueeze(-1)
36).squeeze(-1) # [batch_size , seq_len -1]
37

38 # 创建 mask：只计算 response部分（ labels != -100）
39 loss_mask = (shift_labels != -100).float() # [batch_size , seq_len -1]
40

41 # 对每个序列求和得到总对数概率
42 log_probs = (log_probs_token * loss_mask).sum(dim=-1) # [batch_size]
43

44 return log_probs

7.2 DPO损失函数

Listing 2: DPO损失函数
1 def compute_dpo_loss(policy_model , ref_model ,
2 chosen_input_ids , chosen_attention_mask , chosen_labels

,
3 rejected_input_ids , rejected_attention_mask ,

rejected_labels ,
4 beta=0.1):
5 """
6 计算DPO损失
7

8 参数：
9 policy_model: 待训练的策略模型

10 ref_model: 参考模型（冻结）
11 chosen_input_ids: 偏好输出的 input ids
12 chosen_attention_mask: 偏好输出的 attention mask
13 chosen_labels: 偏好输出的 labels（ prompt部分为 -100）
14 rejected_input_ids: 非偏好输出的 input ids
15 rejected_attention_mask:非偏好输出的 attention mask
16 rejected_labels: 非偏好输出的 labels
17 beta: 温度参数
18

19 返回：
20 loss: DPO损失
21 metrics: 用于监控的指标
22 """

21

23 # 计算策略模型的对数概率
24 policy_chosen_logps = compute_log_probs(
25 policy_model , chosen_input_ids , chosen_attention_mask ,

chosen_labels
26)
27 policy_rejected_logps = compute_log_probs(
28 policy_model , rejected_input_ids , rejected_attention_mask ,

rejected_labels
29)
30

31 # 计算参考模型的对数概率（不计算梯度）
32 with torch.no_grad():
33 ref_chosen_logps = compute_log_probs(
34 ref_model , chosen_input_ids , chosen_attention_mask ,

chosen_labels
35)
36 ref_rejected_logps = compute_log_probs(
37 ref_model , rejected_input_ids , rejected_attention_mask ,

rejected_labels
38)
39

40 # 计算隐式奖励
41 # r_hat(x, y) = beta * log(pi_theta(y|x) / pi_ref(y|x))
42 # = beta * (log pi_theta - log pi_ref)
43 chosen_rewards = beta * (policy_chosen_logps - ref_chosen_logps)
44 rejected_rewards = beta * (policy_rejected_logps - ref_rejected_logps)
45

46 # 计算奖励差
47 reward_diff = chosen_rewards - rejected_rewards # [batch_size]
48

49 # DPO损失: -log(sigmoid(reward_diff))
50 # 使用 logsigmoid更数值稳定
51 loss = -F.logsigmoid(reward_diff).mean()
52

53 # 计算监控指标
54 with torch.no_grad():
55 # 准确率：模型是否正确偏好 chosen
56 accuracy = (reward_diff > 0).float().mean()
57

58 # 平均奖励差
59 mean_reward_diff = reward_diff.mean()
60

61 # chosen和 rejected的平均奖励
62 mean_chosen_reward = chosen_rewards.mean()
63 mean_rejected_reward = rejected_rewards.mean()
64

65 metrics = {
66 ’loss’: loss.item(),
67 ’accuracy’: accuracy.item(),
68 ’reward_diff’: mean_reward_diff.item(),
69 ’chosen_reward’: mean_chosen_reward.item(),
70 ’rejected_reward’: mean_rejected_reward.item(),
71 }
72

73 return loss, metrics

22

7.3 数据预处理

Listing 3: DPO数据预处理
1 def preprocess_dpo_data(tokenizer , prompt, chosen_response ,

rejected_response ,
2 max_length=512):
3 """
4 预处理单个DPO样本
5

6 参数：
7 tokenizer: 分词器
8 prompt: 输入 prompt
9 chosen_response: 偏好的回答

10 rejected_response: 非偏好的回答
11 max_length: 最大序列长度
12

13 返回：
14 处理后的数据字典
15 """
16 # 分别 tokenize prompt和 response
17 prompt_tokens = tokenizer(prompt, add_special_tokens=False)
18 chosen_tokens = tokenizer(chosen_response , add_special_tokens=False)
19 rejected_tokens = tokenizer(rejected_response , add_special_tokens=False

)
20

21 # 构建完整序列： [BOS] + prompt + response + [EOS]
22 def build_sequence(prompt_ids , response_ids):
23 input_ids = (
24 [tokenizer.bos_token_id] +
25 prompt_ids +
26 response_ids +
27 [tokenizer.eos_token_id]
28)
29

30 # Labels: prompt部分设为 -100（不计算 loss）
31 labels = (
32 [-100] * (1 + len(prompt_ids)) + # BOS + prompt
33 response_ids +
34 [tokenizer.eos_token_id]
35)
36

37 # 截断
38 input_ids = input_ids[:max_length]
39 labels = labels[:max_length]
40

41 # Attention mask
42 attention_mask = [1] * len(input_ids)
43

44 return {
45 ’input_ids’: input_ids ,
46 ’attention_mask’: attention_mask ,
47 ’labels’: labels,
48 }
49

50 chosen_data = build_sequence(prompt_tokens[’input_ids’],
51 chosen_tokens[’input_ids’])
52 rejected_data = build_sequence(prompt_tokens[’input_ids’],
53 rejected_tokens[’input_ids’])

23

54

55 return {
56 ’chosen_input_ids’: chosen_data[’input_ids’],
57 ’chosen_attention_mask’: chosen_data[’attention_mask’],
58 ’chosen_labels’: chosen_data[’labels’],
59 ’rejected_input_ids’: rejected_data[’input_ids’],
60 ’rejected_attention_mask’: rejected_data[’attention_mask’],
61 ’rejected_labels’: rejected_data[’labels’],
62 }

7.4 完整训练循环

Listing 4: DPO训练循环
1 def train_dpo(policy_model , ref_model , train_dataloader ,
2 num_epochs=1, learning_rate=1e-6, beta=0.1,
3 device=’cuda’, log_interval=100):
4 """
5 DPO训练主函数
6

7 参数：
8 policy_model: 待训练的策略模型
9 ref_model: 参考模型（冻结）

10 train_dataloader: 训练数据加载器
11 num_epochs: 训练轮数
12 learning_rate: 学习率
13 beta: DPO温度参数
14 device: 计算设备
15 log_interval: 日志打印间隔
16 """
17 # 移动模型到设备
18 policy_model = policy_model.to(device)
19 ref_model = ref_model.to(device)
20

21 # 冻结参考模型
22 ref_model.eval()
23 for param in ref_model.parameters():
24 param.requires_grad = False
25

26 # 优化器
27 optimizer = torch.optim.AdamW(policy_model.parameters(), lr=

learning_rate)
28

29 # 训练循环
30 policy_model.train()
31 global_step = 0
32

33 for epoch in range(num_epochs):
34 total_loss = 0
35 total_accuracy = 0
36 num_batches = 0
37

38 for batch in train_dataloader:
39 # 移动数据到设备
40 chosen_input_ids = batch[’chosen_input_ids’].to(device)
41 chosen_attention_mask = batch[’chosen_attention_mask’].to(

device)

24

42 chosen_labels = batch[’chosen_labels’].to(device)
43 rejected_input_ids = batch[’rejected_input_ids’].to(device)
44 rejected_attention_mask = batch[’rejected_attention_mask’].to(

device)
45 rejected_labels = batch[’rejected_labels’].to(device)
46

47 # 计算DPO损失
48 loss, metrics = compute_dpo_loss(
49 policy_model , ref_model ,
50 chosen_input_ids , chosen_attention_mask , chosen_labels ,
51 rejected_input_ids , rejected_attention_mask ,

rejected_labels ,
52 beta=beta
53)
54

55 # 反向传播
56 optimizer.zero_grad()
57 loss.backward()
58

59 # 梯度裁剪（可选但推荐）
60 torch.nn.utils.clip_grad_norm_(policy_model.parameters(),

max_norm=1.0)
61

62 optimizer.step()
63

64 # 统计
65 total_loss += metrics[’loss’]
66 total_accuracy += metrics[’accuracy’]
67 num_batches += 1
68 global_step += 1
69

70 # 打印日志
71 if global_step % log_interval == 0:
72 print(f"Step {global_step}: "
73 f"loss={metrics[’loss ’]:.4f}, "
74 f"acc={metrics[’accuracy ’]:.2%}, "
75 f"reward_diff={metrics[’reward_diff ’]:.3f}")
76

77 # Epoch结束统计
78 avg_loss = total_loss / num_batches
79 avg_accuracy = total_accuracy / num_batches
80 print(f"Epoch {epoch+1}/{num_epochs}: "
81 f"avg_loss={avg_loss:.4f}, avg_acc={avg_accuracy:.2%}")
82

83 return policy_model

7.5 使用示例

Listing 5: DPO使用示例
1 from transformers import AutoModelForCausalLM , AutoTokenizer
2 from torch.utils.data import DataLoader
3

4 # 加载模型和分词器
5 model_name = "gpt2" # 或其他模型
6 tokenizer = AutoTokenizer.from_pretrained(model_name)
7 tokenizer.pad_token = tokenizer.eos_token

25

8

9 # 加载策略模型（待训练）
10 policy_model = AutoModelForCausalLM.from_pretrained(model_name)
11

12 # 加载参考模型（冻结）
13 ref_model = AutoModelForCausalLM.from_pretrained(model_name)
14

15 # 准备数据（示例）
16 train_data = [
17 {
18 ’prompt’: ’What is the capital of France?’,
19 ’chosen’: ’The capital of France is Paris.’,
20 ’rejected’: ’I dont know.’,
21 },
22 # ... 更多数据
23]
24

25 # 预处理数据
26 processed_data = [
27 preprocess_dpo_data(tokenizer , d[’prompt’], d[’chosen’], d[’rejected’])
28 for d in train_data
29]
30

31 # 创建 DataLoader（需要实现 collate_fn处理 padding）
32 # train_dataloader = DataLoader(processed_data , batch_size=4, ...)
33

34 # 训练
35 trained_model = train_dpo(
36 policy_model ,
37 ref_model ,
38 train_dataloader ,
39 num_epochs=3,
40 learning_rate=1e-6,
41 beta=0.1
42)
43

44 # 保存模型
45 trained_model.save_pretrained("dpo_trained_model")

8 DPO的变体与扩展

DPO自提出以来，研究者们发现了一些问题并提出了改进方法。

8.1 IPO：Identity Preference optimisation

注记 8.1 (DPO的过拟合问题). DPO可能存在过拟合问题：当训练数据有限或噪声较大时，模型
可能过度拟合偏好标签，导致：

• 隐式奖励差 ∆r̂变得非常大

• 策略变得过于极端

• 泛化能力下降

定义 8.1 (IPO损失函数). IPO（Identity Preference optimisation）通过修改损失函数来缓解过拟合：

LIPO(θ) = E(x,yw,yl)

[(
log πθ(yw|x)

πref(yw|x)
− log πθ(yl|x)

πref(yl|x)
− 1

2β

)2
]

(50)

26

IPO使用平方损失而非对数 Sigmoid损失，目标是让隐式奖励差接近 1
2β，而非无限增大。

8.2 KTO：Kahneman-Tversky optimisation

注记 8.2 (不需要成对数据). DPO 需要成对的偏好数据 (yw, yl)，但收集这样的数据成本较高。
KTO只需要单独标注每个输出是好还是坏。

定义 8.2 (KTO损失函数). KTO的损失函数分别处理正负样本：

LKTO(θ) = Ex,yw [w(yw) · (1− σ(βr̂θ(x, yw)− zref))]

+ Ex,yl [w(yl) · σ(βr̂θ(x, yl)− zref)] (51)

其中 zref是一个参考点，w(·)是权重函数（来自 Kahneman-Tversky的前景理论）。

8.3 其他变体

注记 8.3 (DPO变体概览).
SimPO：简化版 DPO，去掉参考模型

LSimPO = −E
[
logσ

(
β

|yw|
logπθ(yw|x)−

β

|yl|
logπθ(yl|x)− γ

)]
(52)

使用长度归一化的对数概率，并引入 margin参数 γ。

ORPO：Odds Ratio Preference optimisation

LORPO = LSFT(yw)− λ logσ
(

log odds(yw)
odds(yl)

)
(53)

将 SFT损失和偏好损失结合，使用 odds ratio代替概率比。

RSO：Statistical Rejection Sampling optimisation
通过拒绝采样从最优策略生成数据，然后用 SFT训练。

9 DPO vs RLHF：比较与选择

9.1 优缺点对比

注记 9.1 (全面比较).
方面 RLHF (PPO) DPO
实现复杂度 高（需要多个组件） 低（类似监督学习）
内存需求 高（4个模型） 中（2个模型）
训练稳定性 较难（需要调参） 较好（更稳定）
计算效率 低（需要采样） 高（纯前向传播）
数据利用 在线（需要不断采样） 离线（直接用数据集）
理论基础 更一般的 RL框架 需要特定假设
奖励模型 显式，可复用 隐式，与策略绑定
在线学习 原生支持 不直接支持

9.2 实践中的选择建议

注记 9.2 (何时使用 DPO？).

• 计算资源有限（GPU内存不足以加载 4个模型）

27

• 有现成的高质量偏好数据集

• 追求实现简单、快速迭代

• 训练稳定性比极致性能更重要

注记 9.3 (何时使用 RLHF？).

• 需要在线学习，不断从新策略采样

• 需要复用奖励模型用于其他目的

• 偏好数据有限，需要通过采样扩充

• 任务需要更精细的奖励塑形（reward shaping）

注记 9.4 (混合方法). 实践中也可以结合两种方法：

1. 先用 DPO做初步对齐（快速、稳定）

2. 再用 RLHF做精细调优（如果需要）

3. 或者用 DPO训练的模型提取奖励，用于 RLHF

10 总结

10.1 核心公式回顾

概念 公式
RLHF目标 maxπ E[r(x, y)]− β · KL(π∥πref)

最优策略 π∗(y|x) = 1
Z(x)πref(y|x) exp

(
r(x,y)
β

)
隐式奖励 r̂θ(x, y) = β log πθ(y|x)

πref(y|x)
DPO损失 LDPO = −E [logσ(r̂θ(x, yw)− r̂θ(x, yl))]

DPO梯度 ∇L = −β(1− σ(∆r̂))(∇ logπ(yw)−∇ logπ(yl))

表格 2: DPO核心公式

10.2 要点总结

1. DPO的核心思想：将奖励函数隐式化为策略的函数，从而绕过显式的奖励建模和强化学习

2. 关键推导：从 RLHF目标的最优策略出发，反解奖励函数，代入 Bradley-Terry模型，配分
函数消去

3. 损失函数：与奖励模型损失结构相同，但用隐式奖励代替显式奖励

4. 实现简单：本质上是监督学习，只需要计算对数概率

5. 理论等价：在理想条件下与 RLHF等价，实践中效果相当

6. 变体扩展：IPO解决过拟合，KTO不需要成对数据，SimPO去掉参考模型

28

	引言与动机
	RLHF的回顾与局限性
	DPO的核心思想

	从RLHF到DPO的数学推导
	RLHF目标函数的回顾
	最优策略的闭式解
	从最优策略反解奖励函数
	Bradley-Terry模型回顾
	代入Bradley-Terry模型
	DPO损失函数的推导

	DPO损失函数的分析
	损失函数的直观理解
	梯度分析
	 参数的作用
	对比学习角度理解DPO
	DPO损失的另一种形式
	对比学习回顾
	DPO作为对比学习
	与多负样本对比学习的联系

	DPO与RLHF的理论联系
	等价性条件
	DPO的隐式奖励模型
	KL散度的隐式约束

	DPO的适用范围与多步MDP扩展
	DPO推导的关键假设
	多步MDP下DPO的问题
	多步MDP的偏好建模
	配分函数无法消去

	基于优势函数的偏好建模
	动机：优势函数作为偏好度量
	基于优势函数的Bradley-Terry模型
	从优势函数到策略
	代入偏好模型得到损失函数

	总结：DPO的本质

	DPO的实现细节
	数据准备
	序列概率的计算
	数值稳定性
	参考模型的处理

	代码实现
	计算序列对数概率
	DPO损失函数
	数据预处理
	完整训练循环
	使用示例

	DPO的变体与扩展
	IPO：Identity Preference optimisation
	KTO：Kahneman-Tversky optimisation
	其他变体

	DPO vs RLHF：比较与选择
	优缺点对比
	实践中的选择建议

	总结
	核心公式回顾
	要点总结

