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Recent Advances in Search Agents

Recent LLM-based search agents have achieved impressive results:

Multi-step Search & Reasoning:

Tongyi DeepResearch (2025)

WebDancer (2025)

MaskSearch (2025)

✓ Complex multi-step planning
✓ Long trajectory training
✓ Iterative refinement

KG-Enhanced Search:

PaSa (2025): Citation network

DynaSearcher (2025):
Wikidata

CausalKG (2021): Causal
relations

✓ Structured knowledge
✓ Improved retrieval
✓ Rich representations

Question

These systems work well for general QA. What about scientific
reasoning?
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The Unique Challenges of Scientific Reasoning

Scientific questions require more than information retrieval:

Example: Vitamin D and COVID-19

User asks: ”Does vitamin D prevent severe COVID-19?”

Current systems might say:
”Studies show vitamin D levels are associated with COVID-19 severity...”

Problem: Association ̸= Causation

Scientific reasoning requires:

Distinguish correlation from causation

Check for reverse causation: Severe patients → hospitalised → less
sunlight → low vitamin D

Evaluate evidence type: RCTs show no effect, observational studies show
correlation

Assess evidence quality: GRADE framework

Quantify effect size with uncertainty: RR = 0.95, 95%CI: [0.82, 1.10]
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What Current Systems Do Well

Tongyi DeepResearch /
WebDancer

Strengths:

✓ Multi-step search

✓ Agent orchestration

✓ Long trajectory handling

✓ Iterative refinement

Limitations for science:

× No causality distinction

× No evidence grading

× LLM black-box reasoning

× No structured representation

PaSa / DynaSearcher

Strengths:

✓ KG-enhanced retrieval

✓ Structured knowledge

✓ Domain-specific search

Limitations for science:

× Static, pre-built KGs

× General relations, not causal

× No evidence assessment

× Focus on retrieval, not
reasoning
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Standing on the Shoulders of Giants

Key Insight

These systems provide 80% of what we need (search, agents, KG).
We need the remaining 20%: causal reasoning with evidence assessment.
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The Gap: Scientific Causal Reasoning

Capability Tongyi PaSa CausalKG Needed

Multi-step search ✓ ✓ — ✓
KG-enhanced × ✓ ✓ ✓
Causal relations × × ✓ ✓

Causation vs correlation × × × ✓
Evidence quality (GRADE) × × × ✓
Literature-driven KG × × × ✓
Dynamic KG construction × × × ✓

Why existing KG approaches don’t work:

PaSa/DynaSearcher: Use static, general KGs (Wikidata) — no
causal relations, no evidence grading

CausalKG: Data-driven (learns from observational data) — not
literature-driven, no evidence assessment
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Core Problem

Core Problem

No existing system dynamically constructs causal KGs from
scientific literature with evidence assessment.
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Research Question

How to build an agent that dynamically constructs
causal knowledge graphs from scientific literature

to enable evidence-based reasoning?

Key distinction from prior work:

NOT our approach:

Pre-build a large causal KG

Store all scientific knowledge

Query static database

→ This is database engineering

Our approach:

User asks a question

Agent searches literature

Dynamically builds KG from
results

Reasons over temporary KG

→ This is agent research
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Three Research Challenges

1 On-the-Fly Causal KG Construction
How to extract causal relations from retrieved papers in real-time?
How to represent effect sizes, conditions, and evidence sources?
How to handle contradictory studies?

2 Evidence-Guided Structured Reasoning
How to automatically assess evidence quality (GRADE framework)?
How to reason over the KG to synthesize conclusions?
How to distinguish causation from correlation?

3 Causal-Aware Search Strategy
How to identify when a query requires causal reasoning?
How to plan searches for different evidence types (RCT vs
observational)?
How to iteratively refine the KG based on gaps?
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System Overview: Dynamic Causal KG Agent

User Query

Query Understanding

Identify causal question
Extract key concepts
Plan search strategy

Multi-Step Search

Search RCTs
Search Meta-analyses
Search observational

Dynamic KG Construction
(Core Innovation)

Extract causal claims
Assess evidence quality
Build graph structure

KG-Based Reasoning
(Core Innovation)

Query causal paths
Synthesize evidence
Generate explanation

Self-Reflection

Check evidence gaps
Decide if more search

Iterate or finalise

Final Answer

If gaps found

Key difference from existing agents: Intermediate structured
representation (KG) enables verifiable, evidence-grounded reasoning
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Example Walkthrough: ”Does Vitamin D Prevent
COVID-19?”

Phase 1: Query Understanding

Recognise: Causal question

Extract: Intervention = Vitamin D, Outcome = COVID-19 severity

Plan: Search for RCTs, Meta-analyses, Observational studies

Phase 2: Multi-Step Search

Search 1: ”vitamin D COVID-19 RCT” → 3 papers

Search 2: ”vitamin D COVID-19 meta-analysis” → 2 papers

Search 3: ”vitamin D COVID-19 observational” → 5 papers

Phase 3: Dynamic KG Construction (Core Innovation)

Extract from each paper:

RCT 1: RR=0.98, CI:[0.85,1.12], n=500

Meta: RR=0.95, CI:[0.82,1.10], 7 RCTs

Obs: Correlation r=-0.45, n=5000

Build temporary KG:

Node: VitaminD, COVID Severity

Edge: causal effect unclear

Evidence: RCT (High), Obs (Low)

Conclusion: Insufficient evidence

F. Sun Dynamic Causal KG for Scientific Reasoning December 15, 2025 12 / 38



Example Continued

Phase 4: KG-Based Reasoning (Core Innovation)

1 Query KG: Does VitaminD causally reduce COVID Severity?

2 Check evidence types:

High-quality evidence (RCT, Meta): No significant effect
Low-quality evidence (Observational): Shows correlation

3 GRADE Assessment:

Initial grade: High (RCTs available)
Downgrade: Effect not significant (CI crosses 1.0)
Final grade: Low evidence of causal effect

4 Check alternative explanations:

Reverse causation: Severe patients → hospitalized → low vitamin D
Confounder: Healthy lifestyle → vitamin D + immunity

Phase 5: Self-Reflection

Evidence sufficient? Yes (RCTs + Meta available)

Need more search? No

Generate final answer
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KG Representation (Using RDF*) I

Inspired by CausalKG, but extended for literature-driven construction:

<<:VitaminD :causal_effect :COVID_Severity>>

# Effect quantification

:effectSize ’’RR=0.95’’^^xsd:float ;

:confidenceInterval ’’[0.82, 1.10]’’ ;

:statisticalSignificance ’’p=0.48’’ ;

# Evidence sources (key extension)

:supportedBy [

:Study_RCT_2023 [

:studyType :RandomizedControlledTrial ;

:sampleSize 500 ;

:effectSize 0.98 ;

:qualityScore :High

],

:Study_Meta_2024 [

:studyType :MetaAnalysis ;

:includedStudies 7 ;

:effectSize 0.95 ;

:heterogeneity ’’I2=15%’’ ;

:qualityScore :High

]

] ;

# Evidence assessment (key extension)

:evidenceGrade :Low ;

:gradeJustification ’’Effect not statistically significant’’ ;
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KG Representation (Using RDF*) II

# Alternative explanations (key extension)

:possibleReverseCausation true ;

:confounders [:Hospitalization, :HealthyLifestyle] ;

# Temporal metadata

:constructedAt ’’2024-12-13’’^^xsd:date ;

:querySpecific ’’Does vitamin D prevent COVID-19?’’ .
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Core Innovation 1: On-the-Fly KG Construction

Why not pre-build a KG?

Scientific literature: 30M+ papers in PubMed alone

User queries: Long-tail distribution, impossible to anticipate

Knowledge updates: New papers published daily

Our approach: Build KG dynamically for each query

Aspect Pre-built KG Dynamic KG (Ours)

Coverage Limited, static Query-specific, focused
Freshness Outdated Includes latest papers
Scalability Need to process all papers Only process relevant papers
Feasibility Infeasible for 30M+ papers Feasible (10-20 papers/query)

Technical challenges:

Fast extraction: Quickly build KG from 10-20 papers

High accuracy: Causal claims, effect sizes, study types

Conflict resolution: Handle contradictory studies
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Core Innovation 2: Evidence-Guided Reasoning

Why not just use LLM to synthesize?

LLM Black-box Reasoning:

× Cannot verify reasoning steps

× May ”hallucinate” evidence

× Citation accuracy issues

× Unclear evidence weighting

KG-Based Reasoning:

✓ Explicit reasoning paths

✓ Traceable to sources

✓ Verifiable evidence chain

✓ Systematic GRADE scoring
GRADE Framework Integration:

1 Initial grading: RCT/Meta = High, Observational = Low

2 Downgrade factors:

Risk of bias (study quality)
Inconsistency (heterogeneity across studies)
Indirectness (different populations/outcomes)
Imprecision (wide confidence intervals)

3 Upgrade factors: Large effect, dose-response gradient

4 Final grade: High / Moderate / Low / Very Low
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Core Innovation 3: Causal-Aware Search

Different from general search agents:

Aspect General Agent Causal-Aware (Ours)

Query analysis Keywords Causality detection
Search strategy Broad retrieval Evidence type-specific

(RCT, Meta, Observational)
Stopping criteria Enough info Evidence sufficiency

(per GRADE)
Iteration General refinement Gap-driven search

(missing evidence types)

Example search plan for ”Does aspirin reduce heart attacks?”

1 Identify: Causal question → Need causal evidence

2 Search 1: ”aspirin myocardial infarction RCT” → Find experimental evidence

3 Search 2: ”aspirin heart attack meta-analysis” → Find synthesised evidence

4 Check KG: Do we have high-quality evidence? Yes → Stop

5 If no: Search 3 ”aspirin MI cohort study” → Lower quality but more
coverage
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Standing on the Shoulders of Giants

Our work builds on and extends existing research:

Prior Work What We Borrow What We Add

Tongyi DeepResearch Multi-step search framework + Causal reasoning
Session-level RL + Evidence grading

WebDancer Tool use (search + browse) + Specialised tools
Iterative refinement + Evidence extraction

PaSa Academic search domain + Content reasoning
KG-enhanced retrieval + Causal KG

DynaSearcher KG + Doc hybrid retrieval + Dynamic KG
Multi-reward RL + Literature-driven

CausalKG Rich causal representation + From literature
RDF* for complex relations + Evidence assessment
Causal reasoning patterns + Dynamic construction

Positioning

80% foundation from prior work + 20% critical extension = Novel
contribution
The 20% (causal reasoning, evidence grading, dynamic KG) is essential for
scientific reasoning but missing from all existing systems.
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Why Simple Extensions Don’t Work

Could we just prompt existing systems differently?

Attempt: Enhanced Prompt for Tongyi

”Please distinguish causation from correlation, evaluate evidence quality
using GRADE, check for confounders, and quantify effect sizes.”

Why this fails:
1 LLM black-box: Cannot verify if GRADE was actually applied

LLM might output ”GRADE: High” without actual assessment
No way to check reasoning steps

2 Lack of structure: No enforcement of systematic process
Prompt is suggestion, not requirement
LLM may skip steps or hallucinate

3 Citation accuracy: Hard to trace claims to sources
LLM may misattribute findings
Cannot verify ”RR=0.80” came from Paper X

KG solves these: Structured representation forces systematic extraction
and enables verification
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Evaluation Dataset: CausalReasoningQA

Inspired by LegalSearchQA (L-MARS), build scientific causal reasoning
benchmark

Dataset Specs:

Size: 200-300 questions

Domain: Biomedical (Stage 1)

Source: Cochrane reviews

Annotation: Medical experts

Question Types:

Causal judgment (40%)

Evidence assessment (30%)

Conditional queries (20%)

Conflict detection (10%)

Example Questions:

Type 1: Causal judgment

”Does aspirin reduce myocardial infarction
risk?”

Gold: Established (RR=0.80, GRADE: High)

Type 2: Evidence assessment

”How strong is the evidence that vitamin D
prevents COVID-19?”

Gold: Low (RCTs show no effect)

Type 3: Conditional

”For age less than 40 without risk factors,
does aspirin reduce MI risk?”

Gold: No evidence / Unlikely
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Evaluation Metrics

Metric Definition

Causal Accuracy Correct classification: Established /
Probable / Unlikely / Disproven

GRADE Accuracy Correct evidence grading: High / Mod-
erate / Low / Very Low

Evidence Completeness % of high-quality studies cited (Recall of
RCTs/Meta-analyses)

Effect Size Accuracy Correct extraction of RR, OR, CI

Confounder Detection % of relevant confounders identified

Explanation Quality Human evaluation: Clarity, correctness,
evidence support
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Baselines

Baselines:

GPT-4 (no tools)

GPT-4 + Web Search (standard agent)

GPT-4 + Web Search + Static KG (Wikidata)

Our System: GPT-4 + Web Search + Dynamic Causal KG

Expected improvements:

Causal accuracy: improvements vs GPT-4 baseline

Evidence completeness: improvements vs single-search baseline
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Stage 1: Biomedical Deep Dive

Infrastructure

Design KG schema (RDF*), Core extraction prompts

Implement BiomedicalAdapter (UMLS/MeSH integration)

Prototype System

Implement extraction pipeline (causal claims, effect sizes, study types)

Implement GRADE assessment module, Build Mini KG (50 papers)

Full System & Data

Implement KG reasoning module, Conflict detection

Build CausalReasoningQA (100 questions), Iterate on system

Evaluation & Writing

Run experiments, Compare baselines

Analyse results, Draft paper
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Stage 2* & 3*: Generalisation

Stage 2*: Validate Transferability

Select second domain (Materials Science or Social Science)

Implement domain adapter

Identify cross-domain patterns vs domain-specific needs

Refactor core architecture based on learnings

Stage 3*: Abstract Framework

Extract common causal reasoning patterns

Design adapter development guide

Open-source framework + documentation

Write methodology paper
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Algorithm 1: Dynamic KG Construction & Reasoning

Algorithm 1: Dynamic Causal KG Construction and Reasoning
Input: user query (e.g., ”Does aspirin reduce heart attack risk?”)
Output: answer (conclusion, evidence grade, explanation, sources)

1 query info ← parse query(user query);
// query info = {type: "causal", intervention: X, outcome: Y}

2 KG ← initialize empty graph();
3 search plan ← generate search plan(query info);

// search plan = ["X Y RCT", "X Y meta-analysis", ...]

4 for each search query in search plan do
5 papers ← web search(search query);
6 for each paper in papers do
7 study info ← llm extract(paper.abstract);

// Extract: study type, effect size, CI, sample size

8 if validate extraction(study info) then
9 study info.grade ← assess grade(study info);

// GRADE: High/Moderate/Low/Very Low

10 KG .add relation(query info.intervention,;
11 query info.outcome,;
12 study info);

13 end

14 end
15 if has sufficient evidence(KG , query info) then
16 break;
17 end

18 end
19 relation ← KG .query(query info.intervention, query info.outcome);
20 if relation = null then
21 return {conclusion: ”No evidence found”};
22 end
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Algorithm 2 (Continued): Reasoning Rules

Algorithm 2: Reasoning Rules (continued from Algorithm 1)
// Apply reasoning rules

27 if relation has ≥ 1 RCT with High/Moderate grade then
28 if aggregate effect is significant then
29 conclusion ← ”Established causal”;
30 else
31 conclusion ← ”No causal effect”;
32 end

33 else
34 if relation has only Low/Very Low grade then
35 conclusion ← ”Insufficient evidence”;
36 else
37 conclusion ← ”Unclear”;
38 end

39 end
40 explanation ← generate explanation(conclusion, relation);
41 return {conclusion, relation.overall grade, explanation, relation.sources};
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Algorithm 3: GRADE Evidence Assessment

Algorithm 3: GRADE Evidence Quality Assessment
Input: study info (study type, effect size, sample size, ...)
Output: grade ∈ {High,Moderate, Low, Very Low}

1 if study info.type ∈ {RCT ,Meta-analysis} then
2 initial grade ← 4 ; // High

3 else
4 initial grade ← 2 ; // Low

5 end
6 downgrades ← 0;

// Imprecision (rule-based)

7 if study info.sample size < 100 then
8 downgrades ← downgrades + 1;
9 end

10 if study info.CI is wide then
11 downgrades ← downgrades + 1;
12 end
13 if study info.effect not significant then
14 downgrades ← downgrades + 1;
15 end

// Risk of bias (LLM-assisted)

16 bias assessment ← llm assess bias(study info);
17 downgrades ← downgrades + bias assessment.downgrade;
18 final grade ← max(1,min(4, initial grade − downgrades));
19 grade map ← {4 : High, 3 : Moderate, 2 : Low, 1 : Very Low};
20 return grade map[final grade];
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Summary of Contributions

Technical Contributions (System & Methods)

1 Dynamic KG Construction: Multi-stage extraction, evidence-aware
schema, incremental building

2 Evidence-Graded Reasoning: GRADE integration, hybrid rule-LLM,
verifiable inference

3 Causal-Aware Search: Query classification, evidence type-specific
planning, gap-driven iteration

Empirical Contributions (Data & Evaluation)

4 CausalReasoningQA Benchmark: 200-300 questions,
multi-dimensional annotations

5 Evaluation Framework: Beyond accuracy, ablation studies, design
validation
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Summary of Contributions

Potential Impact (Applications & Extensions)

6 Clinical & Research Tools: Decision support, literature review
assistance

7 Extensible Framework: Domain adapters, open-source,
community-driven

Key message: Our contributions lie in how to effectively combine
existing components (LLMs, search, KG) for scientific reasoning, not
merely in training new models.
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Potential Risks & Mitigation

Risk Challenge Mitigation Strategy

Extraction Accuracy LLM may hallucinate causal
claims or effect sizes

Multi-stage verification: (1) Few-shot ex-
traction (2) Rule-based validation (3) Self-
consistency checks (4) Confidence scoring
for manual review

GRADE Automation GRADE requires expert judg-
ment (e.g., indirectness assess-
ment)

(1) Automate objective components (study
type, sample size) (2) LLM-assisted subjec-
tive components (3) Human-in-loop for am-
biguous cases (4) Compare with Cochrane
assessments

Speed Requirements Building KG from 10-20 papers
could be time-consuming

(1) Parallel processing of papers (2)
Caching of common extractions (3) Pro-
gressive disclosure (show partial KG while
building)

Benchmark Quality Need expert annotations (expen-
sive)

(1) Start with Cochrane reviews (pre-
annotated) (2) Begin with 100 questions,
expand after validation

Generalisation Focuses on 1-2 domains first;
generalisation unproven

(1) Clear positioning: depth-first strategy
(2) Design modular architecture from start
(3) Document patterns for community ex-
tensions (4) Provide adapter development
guide
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Questions for Discussion

I would greatly appreciate your guidance on these feasibility
concerns:

1 Technical Feasibility & Validation
What accuracy threshold makes the system useful?

If LLM extraction achieves 70% accuracy, is KG-based reasoning still
valuable?
How do we validate that KG actually helps vs pure LLM? (if ablation
shows minimal difference?)

2 Success Criteria
What improvement over baseline constitutes success?

+10% causal accuracy? +20%? What’s realistic and publishable?

3 Scope & Backup Plans
If full system proves too ambitious, acceptable simplifications:

Focus on evidence grading only (drop full causal reasoning)?
Single evidence type (RCTs only)?

At what point (month/milestone) should I consider pivoting?
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Summary

Problem

Current search agents lack systematic causal reasoning capabilities needed
for scientific questions

Proposed Solution

Dynamic Causal KG Agent: Constructs causal knowledge graphs
on-the-fly from retrieved literature

Query-specific, not pre-built

Literature-driven, not data-driven

Evidence-graded with GRADE framework

Structured reasoning, not LLM black-box
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Summary

Core Innovations
1 On-the-fly causal KG construction from literature

2 Evidence-guided structured reasoning (GRADE integration)

3 Causal-aware search strategy (evidence type-specific)

Timeline & Milestones

Stage 1: Biomedical system + benchmark + paper draft

Stage 2*: Second domain + transferability analysis

Stage 3*: General framework + methodology paper
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Thank you.
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Backup: Detailed Example Output

User: ”Does aspirin reduce heart attack risk?”

System Output:
Conclusion: Established Causal Relationship
Aspirin reduces myocardial infarction (MI) risk by approximately 20%.
Evidence Summary:

Effect Size: RR = 0.80 (95% CI: 0.73-0.88)
Evidence Grade: High (GRADE assessment)
Based on: Meta-analysis of 287 RCTs (n=135,000)

Applicable Conditions:

Age ≥ 50 years
Presence of cardiovascular risk factors
Dosage: 75-100 mg/day
Duration: Minimum 6 months

Important Considerations:

Also increases bleeding risk (RR=1.5 for GI bleeding)
Benefit-risk assessment needed for each patient

Primary Source: Antithrombotic Trialists’ Collaboration (2009)
DOI: 10.1111/j.1538-7836.2009.03307.x
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Backup: Comparison with Existing Systems

Same query to different systems:

GPT-4 (no tools):
”Yes, aspirin is commonly used to reduce heart
attack risk. It works by preventing blood
clots...”

Issues:
No effect quantification

No evidence citation

No conditions specified

No risk-benefit discussion

Tongyi-style agent:
”Research shows aspirin reduces heart attack
risk. A meta-analysis found significant reduc-
tion. However, there are bleeding risks...”

Issues:
Vague ”significant reduction”

No GRADE assessment

No systematic evidence review

Our system:
”Established causal: RR=0.80 (95% CI: 0.73-
0.88), GRADE: High, based on 287 RCTs.
Applicable for age ≥50 with risk factors, 75-
100mg/day, ≥6 months. Note: increases
bleeding risk (RR=1.5).”

Advantages:
Precise effect size + CI

Evidence grade (GRADE)

Specific conditions

Risk-benefit quantified

Source traceable via KG
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Backup: Why This is LLM/Agent Research

Core technical challenges are all LLM/Agent-related:

1 Few-shot Information Extraction
Extract structured causal information from unstructured text
Challenge: Achieve high accuracy with minimal examples
Techniques: CoT prompting, self-consistency, verification

2 LLM-Assisted Evidence Assessment
Automate GRADE scoring components
Challenge: Match expert judgment
Techniques: Reasoning chains, multi-step verification

3 Agent Orchestration
Multi-step planning, execution, reflection
Challenge: When to search more vs conclude
Techniques: ReAct, self-critique, iterative refinement

4 Structured Reasoning
Reasoning over KG structure
Challenge: Combine symbolic (KG) and neural (LLM)
Techniques: Neuro-symbolic integration

5 Explanation Generation
Generate human-readable explanations from KG
Challenge: Clarity + evidence grounding
Techniques: Template-based + LLM generation
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