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Recent Advances in Search Agents

Recent LLM-based search agents have achieved impressive results:

Multi-step Search & Reasoning: KG-Enhanced Search:

@ Tongyi DeepResearch (2025) @ PaSa (2025): Citation network
e WebDancer (2025) e DynaSearcher (2025):
@ MaskSearch (2025) Wikidata

o CausalKG (2021): Causal

v' Complex multi-step planning
v’ Long trajectory training
v’ lterative refinement V" Structured knowledge
v' Improved retrieval
v" Rich representations

relations

These systems work well for general QA. What about scientific
reasoning?
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The Unique Challenges of Scientific Reasoning

Scientific questions require more than information retrieval:

Example: Vitamin D and COVID-19

User asks: "Does vitamin D prevent severe COVID-197"

Current systems might say:
"Studies show vitamin D levels are associated with COVID-19 severity..."”

Problem: Association # Causation
Scientific reasoning requires:

@ Distinguish correlation from causation

@ Check for reverse causation: Severe patients — hospitalised — less
sunlight — low vitamin D

@ Evaluate evidence type: RCTs show no effect, observational studies show
correlation

@ Assess evidence quality: GRADE framework

@ Quantify effect size with uncertainty: RR = 0.95, 95%Cl: [0.82, 1.10]

Dynamic Causal KG for Scientific Reasoning December 15, 2025 4/38



What Current Systems Do Well

Tongyi DeepResearch / PaSa / DynaSearcher

WebDancer Strengths:

Strengths: v KG-enhanced retrieval
v' Multi-step search V" Structured knowledge

v' Agent orchestration v Domain-specific search

v Long trajectory handling

/ lterative refinement Limitations for science:

x Static, pre-built KGs
Limitations for science: % General relations, not causal
% No causality distinction « No evidence assessment
% No evidence grading x Focus on retrieval, not
x LLM black-box reasoning reasoning
X No structured representation

Dynamic Causal KG for Scientific Reasoning December 15, 2025



Standing on the Shoulders of Giants

These systems provide 80% of what we need (search, agents, KG).
We need the remaining 20%: causal reasoning with evidence assessment.
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The Gap: Scientific Causal Reasoning

Capability Tongyi PaSa CausalKG Needed
Multi-step search v v — v
KG-enhanced X v v N
Causal relations X X v v
Causation vs correlation X X X v
Evidence quality (GRADE) X X X v
Literature-driven KG X X X v
Dynamic KG construction X X X v

Why existing KG approaches don’t work:
e PaSa/DynaSearcher: Use static, general KGs (Wikidata) — no

causal relations, no evidence grading

e CausalKG: Data-driven (learns from observational data) — not

literature-driven, no evidence assessment
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Core Problem

Core Problem

No existing system dynamically constructs causal KGs from
scientific literature with evidence assessment.
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Research Question

How to build an agent that dynamically constructs
causal knowledge graphs from scientific literature
to enable evidence-based reasoning?

Key distinction from prior work:

NOT our approach: Our approach:

@ Pre-build a large causal KG @ User asks a question

@ Store all scientific knowledge @ Agent searches literature

@ Query static database o Dynamically builds KG from
— This is database engineering results

@ Reasons over temporary KG

— This is agent research
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Three Research Challenges

© On-the-Fly Causal KG Construction

e How to extract causal relations from retrieved papers in real-time?
e How to represent effect sizes, conditions, and evidence sources?
e How to handle contradictory studies?

@ Evidence-Guided Structured Reasoning

o How to automatically assess evidence quality (GRADE framework)?
e How to reason over the KG to synthesize conclusions?
e How to distinguish causation from correlation?

© Causal-Aware Search Strategy

o How to identify when a query requires causal reasoning?

e How to plan searches for different evidence types (RCT vs
observational)?

e How to iteratively refine the KG based on gaps?
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System Overview: Dynamic Causal KG Agent

Check evidence gaps
Decide if rhore search
Iterate d finalise

User Query

Final Answer Self-Reflection

. KG-Based Reasoning
Query Understanding

If gaps found (Core Innovation)

Query cafisal paths
Synthesiz} evidence
Generate dxplanation

Identify causal question
Extract key concepts
Plan seardh strategy

Dynamic KG Construction

Multi-Step-Search

(Core Innovation)

Search RCTs Extract causal claims
Search Meta-analyses Assess evidence quality
Search observational Build graph structure

Key difference from existing agents: Intermediate structured
representation (KG) enables verifiable, evidence-grounded reasoning
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Example Walkthrough: "Does Vitamin D Prevent

COVID-197"

Phase 1: Query Understanding
@ Recognise: Causal question
@ Extract: Intervention = Vitamin D, Outcome = COVID-19 severity

@ Plan: Search for RCTs, Meta-analyses, Observational studies

Phase 2: Multi-Step Search
@ Search 1: "vitamin D COVID-19 RCT” — 3 papers
@ Search 2: "vitamin D COVID-19 meta-analysis’ — 2 papers

@ Search 3: "vitamin D COVID-19 observational” — 5 papers

Phase 3: Dynamic KG Construction

Extract from each paper: Build temporary KG:
@ RCT 1: RR=0.98, CI:[0.85,1.12], n=500 @ Node: VitaminD, COVID_Severity
@ Meta: RR=0.95, CI:[0.82,1.10], 7 RCTs Edge: causal_effect_unclear

o
@ Obs: Correlation r=-0.45, n=5000 @ Evidence: RCT (High), Obs (Low)
()

Conclusion: Insufficient evidence
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Example Continued

Phase 4: KG-Based Reasoning
@ Query KG: Does VitaminD causally reduce COVID_Severity?

@ Check evidence types:
e High-quality evidence (RCT, Meta): No significant effect
o Low-quality evidence (Observational): Shows correlation
© GRADE Assessment:

o Initial grade: High (RCTs available)
o Downgrade: Effect not significant (Cl crosses 1.0)
o Final grade: Low evidence of causal effect

© Check alternative explanations:

e Reverse causation: Severe patients — hospitalized — low vitamin D
o Confounder: Healthy lifestyle — vitamin D + immunity

Phase 5: Self-Reflection
@ Evidence sufficient? Yes (RCTs + Meta available)
@ Need more search? No

@ Generate final answer
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KG Representation (Using RDF*) |

Inspired by CausalKG, but extended for literature-driven construction:

<<:VitaminD :causal_effect :COVID_Severity>>
# Effect quantification
teffectSize ’’RR=0.95’’""xsd:float ;
:confidenceInterval ’’[0.82, 1.10]°’ ;
:statisticalSignificance ’’p=0.48’" ;

# Evidence sources (key extension)
:supportedBy [
:Study_RCT_2023 [
:studyType :RandomizedControlledTrial ;
:sampleSize 500
:effectSize 0.98 ;
:qualityScore :High
1,
:Study_Meta_2024 [
:studyType :MetaAnalysis ;
:includedStudies 7 ;
:effectSize 0.95 ;
:heterogeneity ’’I2=15%’’ ;
:qualityScore :High

15
# Evidence assessment (key extension)

:evidenceGrade :Low ;
:gradeJustification ’’Effect not statistically significant’’ ;
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KG Representation (Using RDF*) I

# Alternative explanations (key extension)
:possibleReverseCausation true ;
:confounders [:Hospitalization, :HealthyLifestylel ;

# Temporal metadata
:constructedAt ’’2024-12-13’’""xsd:date ;
:querySpecific ’’Does vitamin D prevent COVID-197’’
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Core Innovation 1: On-the-Fly KG Construction

Why not pre-build a KG?
@ Scientific literature: 30M+ papers in PubMed alone
@ User queries: Long-tail distribution, impossible to anticipate
@ Knowledge updates: New papers published daily

Our approach: Build KG dynamically for each query

Aspect Pre-built KG Dynamic KG (Ours)
Coverage Limited, static Query-specific, focused
Freshness  Outdated Includes latest papers

Scalability Need to process all papers  Only process relevant papers
Feasibility  Infeasible for 30M+ papers  Feasible (10-20 papers/query)

Technical challenges:
o Fast extraction: Quickly build KG from 10-20 papers
@ High accuracy: Causal claims, effect sizes, study types
@ Conflict resolution: Handle contradictory studies
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Core Innovation 2: Evidence-Guided Reasoning

Why not just use LLM to synthesize?

LLM Black-box Reasoning: KG-Based Reasoning:
x Cannot verify reasoning steps v Explicit reasoning paths
x May "hallucinate” evidence v Traceable to sources
x Citation accuracy issues v" Verifiable evidence chain
% Unclear evidence weighting v Systematic GRADE scoring

GRADE Framework Integration:

@ Initial grading: RCT/Meta = High, Observational = Low
@ Downgrade factors:

Risk of bias (study quality)

Inconsistency (heterogeneity across studies)
Indirectness (different populations/outcomes)
Imprecision (wide confidence intervals)

© Upgrade factors: Large effect, dose-response gradient
@ Final grade: High / Moderate / Low / Very Low
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Core Innovation 3: Causal-Aware Search

Different from general search agents:

Aspect General Agent Causal-Aware (Ours)
Query analysis Keywords Causality detection
Search strategy Broad retrieval Evidence type-specific
(RCT, Meta, Observational)
Stopping criteria  Enough info Evidence sufficiency
(per GRADE)
Iteration General refinement  Gap-driven search

(missing evidence types)

Example search plan for " Does aspirin reduce heart attacks?”
© Identify: Causal question — Need causal evidence
@ Search 1: "aspirin myocardial infarction RCT" — Find experimental evidence
© Search 2: "aspirin heart attack meta-analysis” — Find synthesised evidence
© Check KG: Do we have high-quality evidence? Yes — Stop

@ If no: Search 3 "aspirin M| cohort study” — Lower quality but more
coverage
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Standing on the Shoulders of Giants

Our work builds on and extends existing research:

Prior Work

What We Borrow

What We Add

Tongyi DeepResearch

Multi-step search framework
Session-level RL

t Causal reasoning
+ Evidence grading

WebDancer Tool use (search + browse) + Specialised tools
Iterative refinement + Evidence extraction
PaSa Academic search domain + Content reasoning
KG-enhanced retrieval + Causal KG
DynaSearcher KG + Doc hybrid retrieval t Dynamic KG
Multi-reward RL i Literature-driven
CausalKG Rich causal representation + From literature

RDF* for complex relations
Causal reasoning patterns

+ Evidence assessment
+ Dynamic construction

Positioning

80% foundation from prior work + 20% critical extension = Novel

contribution

The 20% (causal reasoning, evidence grading, dynamic KG) is essential for
scientific reasoning but missing from all existing systems.
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Why Simple Extensions Don't Work

Could we just prompt existing systems differently?

Attempt: Enhanced Prompt for Tongyi

"Please distinguish causation from correlation, evaluate evidence quality
using GRADE, check for confounders, and quantify effect sizes.”

Why this fails:

@ LLM black-box: Cannot verify if GRADE was actually applied
o LLM might output "GRADE: High” without actual assessment
o No way to check reasoning steps

@ Lack of structure: No enforcement of systematic process
e Prompt is suggestion, not requirement
e LLM may skip steps or hallucinate

© Citation accuracy: Hard to trace claims to sources
e LLM may misattribute findings
e Cannot verify "RR=0.80" came from Paper X

KG solves these: Structured representation forces systematic extraction
and enables verification
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Evaluation Dataset: CausalReasoningQA

Inspired by LegalSearchQA (L-MARS), build scientific causal reasoning
benchmark

Dataset Specs: Example Questions:
@ Size: 200-300 questions Type 1: Causal judgment
P Domain: Biomedical (Stage 1) ;iio;f aspirin reduce myocardial infarction

. Gold: Established (RR=0.80, GRADE: High
@ Source: Cochrane reviews old: Established ( igh)

@ Annotation: Medical experts Type 2: Evidence assessment

"How strong is the evidence that vitamin D

Question Types: prevents COVID-197"
Gold: Low (RCTs show no effect)

@ Causal judgment (40%)

@ Evidence assessment (30%) Type 3: Conditional

@ Conditional queries (20%) e e e il e TSk factors
@ Conflict detection (10%) Gold: No evidence / Unlikely
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Evaluation Metrics

Metric

Definition

Causal Accuracy

Correct classification:  Established /
Probable / Unlikely / Disproven

GRADE Accuracy

Correct evidence grading: High / Mod-
erate / Low / Very Low

Evidence Completeness

% of high-quality studies cited (Recall of
RCTs/Meta-analyses)

Effect Size Accuracy

Correct extraction of RR, OR, Cl

Confounder Detection

% of relevant confounders identified

Explanation Quality

Human evaluation: Clarity, correctness,
evidence support

Dynamic Causal KG for Scientific Reasoning December 15, 2025 22/38



Baselines

Baselines:

GPT-4 (no tools)

GPT-4 + Web Search (standard agent)

GPT-4 + Web Search + Static KG (Wikidata)

Our System: GPT-4 + Web Search 4+ Dynamic Causal KG

Expected improvements:

@ Causal accuracy: improvements vs GPT-4 baseline

@ Evidence completeness: improvements vs single-search baseline
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Stage 1: Biomedical Deep Dive

Infrastructure

@ Design KG schema (RDF*), Core extraction prompts

@ Implement BiomedicalAdapter (UMLS/MeSH integration)
Prototype System

@ Implement extraction pipeline (causal claims, effect sizes, study types)

@ Implement GRADE assessment module, Build Mini KG (50 papers)
Full System & Data

@ Implement KG reasoning module, Conflict detection

@ Build CausalReasoningQA (100 questions), lterate on system
Evaluation & Writing

@ Run experiments, Compare baselines

@ Analyse results, Draft paper
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Stage 2* & 3*: Generalisation

Stage 2*: Validate Transferability
@ Select second domain (Materials Science or Social Science)
@ Implement domain adapter
@ ldentify cross-domain patterns vs domain-specific needs
o

Refactor core architecture based on learnings

Stage 3*: Abstract Framework
@ Extract common causal reasoning patterns
@ Design adapter development guide
@ Open-source framework + documentation

@ Write methodology paper
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Algorithm 1: Dynamic KG Construction & Reasoning

Algorithm 1: Dynamic Causal KG Construction and Reasoning

Input: user_query (e.g., "Does aspirin reduce heart attack risk?")
Output: answer (conclusion, evidence_grade, explanation, sources)
query_info < parse_query(user_query);
// query_info = {type: "causal", intervention: X, outcome: Y}
KG < initialize_empty _graph();
search_plan <— generate_search_plan(query _info);
// search_plan = ["X Y RCT", "X Y meta-analysis", ...]
for each search_query in search_plan do
papers <— web_search(search_query);
for each paper in papers do
study_info < llm_extract(paper.abstract);
// Extract: study type, effect_size, CI, sample.size
if validate_extraction(study _info) then
study_info.grade <— assess_grade(study_info);
// GRADE: High/Moderate/Low/Very Low
KG.add_relation(query _info.intervention,;
query_info.outcome,;

studyinfo);
end
end
if has_sufficient_evidence(KG, query_info) then
| break;
end

end
relation <— KG.query(query_info.intervention, query _info.outcome);
if relation = null then
| return {conclusion: "No evidence found"};
end
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Algorithm 2 (Continued): Reasoning Rules

Algorithm 2: Reasoning Rules (continued from Algorithm 1)

// Apply reasoning rules
if relation has > 1 RCT with High/Moderate grade then
if aggregate_effect is significant then

‘ conclusion < " Established causal”;

else
‘ conclusion <— "No causal effect”;
end
else
if relation has only Low/Very Low grade then
‘ conclusion < "Insufficient evidence”;
else
‘ conclusion < "Unclear”;
end
end

explanation < generate_explanation(conclusion, relation);
return { conclusion, relation.overall_grade, explanation, relation.sources};
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Algorithm 3: GRADE Evidence Assessme

Algorithm 3: GRADE Evidence Quality Assessment

Input: study_info (study_type, effect_size, sample_size, ...)
Output: grade € {High, Moderate, Low, Very Low}

1 if study_info.type € {RCT, Meta-analysis} then

2 ‘ initial_grade <+ 4 ; // High
3 else

a | initial_grade < 2 ; // Low
5 end

6 downgrades < 0;

// Imprecision (rule-based)
7 if study_info.sample_size < 100 then
‘ downgrades < downgrades + 1;

9 end

10 if study_info.Cl is wide then

u |  downgrades < downgrades + 1;
12 end

13 if study_info.effect not significant then
14 ‘ downgrades < downgrades + 1;
15 end

// Risk of bias (LLM-assisted)
16 bias_assessment < llm_assess_bias(study_info);
17 downgrades < downgrades + bias_assessment.downgrade;
18 final_grade < max(1, min(4, initial_grade — downgrades));
19 grade_map < {4 : High, 3 : Moderate,2 : Low,1: Very Low};
20 return grade_mapl|final_grade];
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Summary of Contributions

Technical Contributions (System & Methods)
© Dynamic KG Construction: Multi-stage extraction, evidence-aware
schema, incremental building

@ Evidence-Graded Reasoning: GRADE integration, hybrid rule-LLM,
verifiable inference

© Causal-Aware Search: Query classification, evidence type-specific
planning, gap-driven iteration

Empirical Contributions (Data & Evaluation)

@ CausalReasoningQA Benchmark: 200-300 questions,
multi-dimensional annotations

© Evaluation Framework: Beyond accuracy, ablation studies, design
validation

Dynamic Causal KG for Scientific Reasoning December 15, 2025 29/38



Summary of Contributions

Potential Impact (Applications & Extensions)

O Clinical & Research Tools: Decision support, literature review
assistance

@ Extensible Framework: Domain adapters, open-source,
community-driven

Key message: Our contributions lie in how to effectively combine
existing components (LLMs, search, KG) for scientific reasoning, not
merely in training new models.
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Potential Risks & Mitigation

Risk Challenge Mitigation Strategy
Extraction Accuracy LLM may hallucinate causal Multi-stage verification: (1) Few-shot ex-
claims or effect sizes traction (2) Rule-based validation (3) Self-

consistency checks (4) Confidence scoring
for manual review

GRADE Automation GRADE requires expert judg- (1) Automate objective components (study

ment (e.g., indirectness assess- type, sample size) (2) LLM-assisted subjec-

ment) tive components (3) Human-in-loop for am-
biguous cases (4) Compare with Cochrane
assessments

Speed Requirements Building KG from 10-20 papers (1) Parallel processing of papers (2)

could be time-consuming Caching of common extractions (3) Pro-
gressive disclosure (show partial KG while
building)
Benchmark Quality Need expert annotations (expen- (1) Start with Cochrane reviews (pre-
sive) annotated) (2) Begin with 100 questions,

expand after validation

Generalisation Focuses on 1-2 domains first; (1) Clear positioning: depth-first strategy
generalisation unproven (2) Design modular architecture from start
(3) Document patterns for community ex-
tensions (4) Provide adapter development
guide
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Questions for Discussion

| would greatly appreciate your guidance on these feasibility
concerns:

@ Technical Feasibility & Validation
e What accuracy threshold makes the system useful?
o If LLM extraction achieves 70% accuracy, is KG-based reasoning still

valuable?
o How do we validate that KG actually helps vs pure LLM? (if ablation

shows minimal difference?)

@ Success Criteria
o What improvement over baseline constitutes success?
@ +10% causal accuracy? +20%7? What's realistic and publishable?

© Scope & Backup Plans

o If full system proves too ambitious, acceptable simplifications:
o Focus on evidence grading only (drop full causal reasoning)?
@ Single evidence type (RCTs only)?

e At what point (month/milestone) should | consider pivoting?

32/38
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Problem

Current search agents lack systematic causal reasoning capabilities needed
for scientific questions

Proposed Solution

Dynamic Causal KG Agent: Constructs causal knowledge graphs
on-the-fly from retrieved literature

@ Query-specific, not pre-built
o Literature-driven, not data-driven
o Evidence-graded with GRADE framework

@ Structured reasoning, not LLM black-box
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Core Innovations

© On-the-fly causal KG construction from literature
@ Evidence-guided structured reasoning (GRADE integration)

© Causal-aware search strategy (evidence type-specific)

Timeline & Milestones

@ Stage 1: Biomedical system + benchmark + paper draft
@ Stage 2*: Second domain + transferability analysis

@ Stage 3*: General framework + methodology paper
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Thank you.
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Backup: Detailed Example Output

User: "Does aspirin reduce heart attack risk?”

System Output:

Conclusion: Established Causal Relationship
Aspirin reduces myocardial infarction (M) risk by approximately 20%.
Evidence Summary:

@ Effect Size: RR = 0.80 (95% Cl: 0.73-0.88)

@ Evidence Grade: High (GRADE assessment)

@ Based on: Meta-analysis of 287 RCTs (n=135,000)
Applicable Conditions:

@ Age > 50 years

@ Presence of cardiovascular risk factors

@ Dosage: 75-100 mg/day

@ Duration: Minimum 6 months
Important Considerations:

@ Also increases bleeding risk (RR=1.5 for Gl bleeding)

@ Benefit-risk assessment needed for each patient
Primary Source: Antithrombotic Trialists’ Collaboration (2009)
DOI: 10.1111/}.1538-7836.2009.03307.x
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Backup: Comparison with Existing Systems

Same query to different systems:

GPT-4 (no tools):

" Yes, aspirin is commonly used to reduce heart
attack risk. It works by preventing blood
clots...”

Issues:
@ No effect quantification

No evidence citation

No conditions specified

No risk-benefit discussion

Tongyi-style agent:
"Research shows aspirin reduces heart attack

risk. A meta-analysis found significant reduc-
tion. However, there are bleeding risks..."”

Issues:
@ Vague "significant reduction”
@ No GRADE assessment

@ No systematic evidence review

amic Causal KG for Scientific Reasoning

Our system:

" Established causal: RR=0.80 (95% Cl: 0.73-
0.88), GRADE: High, based on 287 RCTs.
Applicable for age > 50 with risk factors, 75-
100mg/day, >6 months. Note: increases
bleeding risk (RR=1.5).”

Advantages:
@ Precise effect size + Cl
Evidence grade (GRADE)

Specific conditions

Risk-benefit quantified

Source traceable via KG
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Backup: Why This is LLM/Agent Research

Core technical challenges are all LLM/Agent-related:

@ Few-shot Information Extraction

@ Extract structured causal information from unstructured text
@ Challenge: Achieve high accuracy with minimal examples
@ Techniques: CoT prompting, self-consistency, verification

@ LLM-Assisted Evidence Assessment

@ Automate GRADE scoring components
@ Challenge: Match expert judgment
@ Techniques: Reasoning chains, multi-step verification

© Agent Orchestration

@ Multi-step planning, execution, reflection
@ Challenge: When to search more vs conclude
@ Techniques: ReAct, self-critique, iterative refinement

@ Structured Reasoning

@ Reasoning over KG structure
@ Challenge: Combine symbolic (KG) and neural (LLM)
@ Techniques: Neuro-symbolic integration

© Explanation Generation
@ Generate human-readable explanations from KG
@ Challenge: Clarity + evidence grounding
@ Techniques: Template-based + LLM generation
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