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1 W#EHRE/H5AE
L1 RS
W d e N ABHZ4EE . AL EW TS
s FrEHRYAIIER, xR 1=(1,1,...,1)T e R £R4 1 1,
o I e R FRMNIERE; AT R E.
* ® #/N Hadamard #1 (GZFICE IR diag(v) FmRTAER .
o« TR f 0 R = RY EHAE R o AL Jacobian EREH Jy(x) € R, 3
(r@)is = g1t
o rank(A). tr(A) 4 BIFERIERE A FIRRIL.
* ker(A) R A FZEZE; In(A) RELEE.
o spanf{or, ..., vy} FR AR R S
o | Ml FRBMULERAEEG | - || FnERR AT GEEED .
* Omin(A) Tl Omax (A) 43 AR RFEIE A BRI AR A F1E

* o(e) FIRRMITLTT NI o
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1.2 LayerNorm 5 X

% X 1.1 (LayerNorm). LayerNorm Bt} LN : RY — R? 5 K
z—p(2)1

LN(z) = ey
o(z)
HA RS 0 R — R ABRHEE RS 0 : R — R E XN
d
1 1
=) = 5 X;z =-1Tz, )
1< 1
o(z) = 82(% —pu(2))? = \/3IIZ—M(Z)1H%- 3)
=1
T 1.2, 7ESZBRSI P, LayerNorm il 5861 & 0 24 S I 5 240 v, 8 € RY, B
LN, s(z) =7 ®LN(z) + 8, “

Hrp © #/R Hadamard . X%} Jacobian FFZMA AT X M A RS diag(y), ASHARZE %S H] i 45
), WERAVE A S SEAINE DL
1.3 Post-LN 5 Pre-LN R 454
E S 1.3 (Post-LN 2). # F : R? — R? 7 Emgt (Attention BER{HE ML) Post-LN 2 & X H
y = LN(z + F(z)). ®))
& Y 1.4 (Pre-LN ). Pre-LN 25 Y
y =z + F(LN(x)). (6)
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2 LayerNorm ] Jacobian /34
2.1 Jacobian {J B X1

2|¥f 2.1 (LayerNorm FfJ Jacobian). i% z € R? {5 /& o(2) > 0, N LayerNorm ¥E z 4bf#) Jacobian %

i 1 1 1
JLN(Z) = % <I - gll—l— — d22T> 5 (7)
Horp 2 = 2O — IN(2) RAbRiffl s it
Proof. BNV HHE. & z2=2—pz)1 (EWEEHRE), W LN(2) =2/0(2).
S %
B p(z) = 3172, HEG
87,“« _ 1 T 1xd
5 = dl € R**¢, 3
B2
M z=z—pu(2)1, TN :
0z ou 1.+
5_1_1&_1—#1. )
WXAMEREN P =1— 1117, @& PR3 1+ (51 ERM T2 MIERHER .
B3 92
Ho(2)® = glzl3 = 3272, MBHLRT 2 RF:
(90 2 T@z 2 T
M PREMRIEMA Pz=2 (Hhz BEEWE, BT 1), &iigz'P=2". Hit
9o 1 1+ 1.
0z do~ _d (b
Ho g fs—H7T 2=2/0,
P 4: HERE] Jin
B LN(2) = z/o, FI| RN
0 10z Zz 0o
=5 (0) =55 oo (12
= 2P-Z 25T (RAz=0) (13)
1 1. -
;P — gzz (14)
-1 (I SELnS }«J) | (15)
K56 T IER . [




2.2 FRAEMMZE
SEPH 2.2 (LayerNorm Jacobian f 23 [A]). XML& 2z € RY (Wi o(2) >0), A
ker(Jin(z)) = span{1, 2}, (16)

H 2 = LN(2) #iits, B F 15 2 Es8 (B 172 = 0), E&MHIEX, # dim(ker(Jin(2))) = 2,
PETT FHAR-ZA0E e AT rank(Jin(2) = d — 2.

Proof. HBIHE 2.1, Jun(2) = L(1 - 3117 — 325T), T 0 > 0, A 5E4 HE SN
TR R SE

S M=1-311" — 3227, BATHERIFOA R REEN v, #i45 Mo =0,

IE 1 € ker(M)

1 1
M1=1- EllTl — E%Tl' (17)

MF1T1=d, 0k 1. BT 2=LN(z) HE 172 =0 (bRfb/EENE), HE=15
F0. At M1=1-1-0=0,

IGHE 2 € ker(M)

1
Mz=3%— gllTé — =373 (18)

1
d
BT BT 1T2=0, WIUG 0. B0 BT 202 =|2]3 = d GRiEETER 1, B
L2 =1), HIiH 2. Bk Ms=2-0—2=0,

ISE 1 2 kI ok
HTF1T2=0, BIER, M&ELRE.
Bk ker(M) 5k — 4
FEFE M A LU B .

M=1I- g(11T+z>,2T). (19)
AQ=111T+2T), T 1M 2 ERH 1) =d. |2 = d., 4 Q &% span{1, 2}
EREE. Bl M =1 —Q &% span{l, 2} WIELHF, HEZEE K span{l,2}. B

YT 2.3, [ 2.9 %8 LayerNorm f] Jacobian J&— Mk d — 2 BIFERE . HLZ 28 1A A E 28 7
B 4 1R L CRIE ) AR 2 CRERZ AT AT o %R LayerNorm
BRI FE T LTI IR o

3 Post-LN W4 Bt

3.1 Jacobian B4

5|3 3.1 (Post-LN FJ Jacobian). i Post-LN 24 y = LN(z + F(z)), & 2
x % v B Jacobian

x+ F(z). NMIMNEN

JPo) () = Jin(2) - (I + Jp(x)). (20)



| Proof HRBERTENI TR, LT AW
* g(z) =z + F(z), W Jy(z) =1+ Jp(z);
* h(z) =LN(2), W Ju(2) = Jun(2);
« y = hlg())-

4R -
J(Post)(x) = Jn(g(2)) - Jg(z) = Jin(z) - (I + Jp(2)). (21)

32 BRAGIEAL
SEPH 3.2 (Post-LN Jacobian ik L5, WHMER « AMEEVMTFZEF, A

rank(J PV (z)) < d — 2. (22)

Proof. HMAEMFRMMBAER: MEEHEK A, B, A

rank(AB) < min(rank(A), rank(B)). (23)

R 2.3, rank(Jin(z) = d - 2. Hik

rank(J %Y (2)) = rank(Jix(2) - (I + Jr(z))) < rank(Jen(z)) = d — 2. (24)

SR 3.3 (Be-ZACAEAUE ). X THEME M e R, HAZas i 5Hk 2
dim(ker(M)) 4 rank(M) = d. (25)

34 AR LFZRE)D. 82 M € R™M 35 ker(M) # {0}, WIFR M %250 5 46 F JLHY
(non-trivial ), ZEfvHl, dim(ker(M)) > 1.

HES 3.5 (Post-LN Jacobian f 2% [ JEF L), FH[EHE 2. 2% 5 3,307 501, X FALEHA 2, Post-LN
JZ ] Jacobian J(PosY) () %23 ) 2 /A WA kB -

dim(ker(J o) (2))) > 2. (26)

KRR AL D BRI TSI ) o1, 02 € RY, G TP (2)o; = 0, BIWTX L7 1) 46
FEfR Bk %Rt fE

33 BBEENZE T RO
B 3.6 (Post-LN AUBRHESRIT ). B = = 2+ F(x), 2= LN(2)o WXHERME w e R,

J(Post)(x) cw =0 = ([ + JF(l'))’UJ S Span{l,é‘}. 27



Proof. EIE], ker(Jin(z)) = span{l, 2z}, Fi&
JPot) () = Jpn(z) - (I + Jp(z)) - w =0 (28)
24 HAYY
(I + Jp(z))w € ker(Jin(2)) = span{1, z}. (29)
|

TR 3.7 (BEW e ST ARRE). [ 3 64K 1 Post-LN BREE ISR LATHL - 4 A B3 w 2
SLFREHIERTIRIR . HUR ([ + Jp(2))w HUFETE LayerNorm " B K" — 987 11 1 AIkRife
ffi i 710 2 3ol —AE T 1. U0 BB IE R B4 LayerNorm 540 . oIk
A X LE AR 2 PRI A . FEONA AR

4 Pre-LN W45 Bt

4.1 Jacobian [j%5Hs
3| ¥ 4.1 (Pre-LN ] Jacobian). # Pre-LN |2 y = x+ F(LN(x)). JWM#IA = 24 y # Jacobian
? TP () = T+ Ju(g(x)) - Jy(x) = I + Jp(LN(z)) - Jin (). (30)
42 BU/NTRER TR
FEUREEMI S5, Jacobian ZEFE J € R S 14 i v & y XTI\ 018 o )RRk M et -
y~Jr JERIN wo KT

SE S 4.2 (B FAESMB). EBHERE T € R #R0] LIgk47 25 S840 % (SVD):

J=UxV",
Hp U,V e R RIERHE, ¥ =diag(o1,...,04), Hor>00>--->04> 0N J & FHE.
TEIE 4.3 (R E SRR, BRI EN T B v € RY, WIZRMEIT LT 4 A A 1k

dy=Jv=UV"o.
HLv="Ve; (e; MbruEskmE), 0
Sy =USV " (Ve;) = USe; = o;Ue;.
MT U RIERHRK, f
10yl = [losUes|| = oil|Ues|| = oi|ei]| = o

R, (ol = Vel = llesl| = 1, Bk

16yl = ol|v]-

RIBBEENY v = Vie; J7 [BOBOR 84 /N EL 9 IESF R 27 53 0
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5| BE 4.4 (Weyl AERBIHEL). WEEMER A € R, HEFHEEBEXN |A] = omax(A), WA
omin(I +A) >1—[|4], 31)

;H\:EP Umin(') %ﬂ?ﬁd‘ﬁﬁfﬁo

Proof. BAMEA] Weyl NEXI T RETE R XTI, 24 Weyl REEXHE %
B: WHER B,C e R,

0i(B+C) > 0i(B) — omax(C), i=1,...,d. (32)

HeS R A%t BaTCZ) AT BRI 1 Weyl &Sty SCHISER (TR
B M B3 S0 03 (M) ST FRAERE MM [IEE R PR, B os(M) = /N (T M)
R (B + O)T(B+C)s BTB. CTC B FXBRIMEH Weyl B 7% 5%

Xi(H1 + Ha) > Ni(Hy) + Aa(H2), (33)

TR ST RERRR O] = omax(C), B35 BE B2,

RIFIBIASIE: BB = 1. C = A, i=d, {TRGIERITA SRR 1, B og() =1,
IN=menl:

omin(I + A) = 0a(I + A) 2 oq(I) — Al =1 — ||A]. (34)

Hid 4.5 (Pre-LN B EM). WEM EF, FHFE I+ A v DI A 1E & g m E—A~ e 2k
Pzl Ao Weyl RNEERRIE, REPLSNE T A AN 1, B FREASAE. XKIERF
BT Pre-LN ghf 5% E M BREE RSP VER . IR MG IRE S, R 2032
|A©| < 1, #fk Jacobian 53RTHRE, BhEEHSREANJ7 494 IE T 5o

EHH 4.6 (Pre-LN BUELE N HD. %8 Pre-LN 2 y = v + F(LN(z)). Hijg|# 4.1), H Jacobian 2
JPr) () = T + Jp(LN(z)) - Jin(a).

EX Alx) = Jp(LN(@)) - Jon(e), W T (@) = I+ A(x). BHFHEEHR [|A@)] < 1. 0
Hif31 3 4.4, Jacobian [ /N SHME I JE

Ounin(JE™ () > 1 — || Az)]| > 0. (35)
X —IE FRARIIE T LU YR
() Wbtk TP () BT, ker(JP) (2)) = {0}
(i) BEEEGRFS: WMIRIEZRNR weR?,
17T () - w]| > omin(JE (@) w]| > (1= [[A()])]|w]| >0, (36)

MR EEFERT A 05 18 EXATIER T 5, NAEFERREE S8 2 RN TT 1l o



Proof. 3 4.1, J®(2) = I+ A(z), H A(z) = Jr(LN(2)) - Jin(z)o
HE[#E 4.4 (Weyl A% :

omin(I + A(z)) > 1 — ||A(z)].- 37)

FNA@) <1, M omin(JF (@) > 0, B S (@) 753, AT ker(JF) (2)) = {0}
SHERE w # 0, HAF A E X

[TF™) (@) w]| > omin(JE™ (@))]Jw]| > (1 = [|A()[])||w]] > 0. (38)

5 Post-LN 5 Pre-LN {Xf b a4t

Post-LN 5 Pre-LN fi) 3% [ | A Bl {E45— J2 ) Jacobian 54 % HCXHB6 BEAGHR BSS I, & IR 45 4
P 2 AR B R 1 % e S 25 s s

Ft 1: Post-LN 15 Pre-LN H 454 PEXT HE

MR Post-LLN Pre-LLN
Jacobian F Jin(z) - (I+ Jp(z)) T+ Jp(LN(z)) - Jin(2)
TEAGE RS T AL E B Jn Ao HAEIERSNE
B B <d-2 =d (fE [|A] < 1 1)
FZoS YL T 3 > 2 =0 (FE Al < 1)
R SE AN RITT I e (/A 2 AL T 1) NFALE

6 xh7: ZEHEBMLE Jacobian /34

6.1 JFRLerEAb By IE B At

2 EMER, Bl 1R AR ZitALiE 2l (local linearisation approximation) . iX— 77 & i Bl
WRIEI T

% 6.1 JRIFRLEMEALMBE). BEAT MU g - RY — RY FE 2 xo AL — M 28R I Ay
9(xo + bx) = g(wo) + Jg(w0)dz + o([|6x])), (39
Hr Jy(wo) & Jacobian FEFE, of[|dx(|) Fam B 057 N 2

lo(llo=|))I]
lszll—0  [[ox| o “0)
TESI TR EEALRE T, FRATI G TER & Jacobian 55 F% J, (xo) IPERT, ‘B T RETE xo BT 8y JRER
LMkAT R




il 6.2 (ZREE AR m‘? LEM% 20 = L)oo fO(O)) 545 ¢ 2 AE 5 2D
AbH Jacobian g JO) = Jy0 (). HEERIEI, Miﬂj]\?]iﬁ‘ Hiffy Jacobian Yy

daL) L 1 ¢

6.2 L ]2 Post-LN [ Jacobian

EHH 6.3 (L |2 Post-LN ] Jacobian). 1% L JZ Post-LN %%, 5 ¢ EH% H R
20 — LN(x(Z—l) —i—F(Z)(.r(E_l))), @)
it iR 24k Jacobian &
0 _ 029
Oz (1)
MM 2@ %] 2L [ Jacobian j’y%ﬁ]&iﬁ

= JLN(Z(K)) (I + T (x(éfl))% 2O = =1 4 F(@)(x(ffl))_ (43)

JWH = HJ HJLN (I + T (21)). (44)

F 4B 5 IR FR B R AN 2 5 rank(AB) < mln(rank(A), rank(B)) LL K H¥.JZ Post-LN Jacobian fifk_F 5
(&3 rank(JO) <d-2), £

rank(J (1)) < , nlnnLrank(J“)) <d-2. (45)

=Ly

B, TCigHERL DR, Post-LN W% 2 /FLE 2 MR e R RERIN T 17 o

6.3 L ]2 Pre-LN [ Jacobian
EH 6.4 (L |2 Pre-LN ] Jacobian). i L |2 Pre-LN %%, % ¢ EHIHiH N

2O = 2D L FOLN(EY)). (46)
TERFREMEAERL T, EX

A(E) = JF(g)(LN(J;(Zfl))) . JLN(I‘@*D), J( ) — I+ A([ 1 (1:L) _ H J (47)
FRATA A (|AD] < 1, W4 Jacobian ik, H
Omin (J ) >HammI+A >H1_HA ) > 48)

/=1

I, BPEERIAARER, Pre-LN MBAEEAEAT R T ﬁL%‘KTz%ﬁynéﬁkl‘fﬁ . PRAIE THREE TR e

Proof. BIRIREMALITRFAAR JED = [T/, (I + A©), GAET (I + AO) BN
SEWE omin(I + AO) > 1 — |[AQ| (3|3 E3) ., 27 ATk TofiiE

L L L
omin( [[(+4®)) > Hamm (I +A® H — 4@ > (49)

=1 =1 —1
Y AQ| < 1 XA €I B omin(JED) > 0 W40 JED iRk, BhEEEAERED M E
Y¥AEZE ]




7 45iE

ARSC N ZENEAREL 1 BE A% 43471 T Post-LN & Pre-LN Transformer ZE#) [RIR6 BEAEREME I 426 04
W Rl HEHRE AN

1. LayerNorm [J Jacobian Z5#4:
ker(Jin(z)) = span{l, 2}, dim(ker(Jin(2))) = 2,

Rl LayerNorm }] Jacobian 7EXJ{E 5 1] 1 FbRvEfbta iy 2 L RA “4eF |, X—HNTE
JUAIPE R I S50 AT R 2 Ao

2. Post-LN 5 Pre-LN [{j4E 3% 5
* Y£ Post-LN H', LayerNorm {Ef TA%ZE &2 )5, #J2 Jacobian 2y
TN (@) = Jin(2) - (I + Je(x)),
T2 Jun(z), fE% B LayerNorm 2255 Ja]" i y&", F308 2 Jacobian BLH 2
rank(J(P) < d - 2,
RV DAFFE BT 150 BRI BEAE R R 56 2 T B o
* 7£ Pre-LN 1, LayerNorm {EHF 724\, )2 Jacobian
TP (2) = I + Jp(LN(x)) - Jin(@),
TEAEMU 1 TSN, KRB LayerNorm 520, #7 || Jp(LN(2)) - Jun(2)|| < 1, M
() (@) > 1= || Jp(LN(2)) - Jun ()] > 0,
RIIE Jacobian {ififk, #EEETERTA 7 10 LA IET H.

3. B JE/R: Post-LN ZE#4Hr LayerNorm [ %45 | H 3 S8 2RI, XARRE T HUI%
ARENE (TR, warm-ups XHRBEBUR) . MELZ T, Pre-LN jd i 45 45 Wt &
TAHNZ, e T BB, HHEESIRER L.
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