
Post-LN Transformer训练不稳定性的数学分析

Abstract

本文从线性代数的角度严格分析 Post-LN与 Pre-LN Transformer架构在训练稳定性上的差
异。我们证明 LayerNorm的 Jacobian矩阵具有非平凡的零空间，导致 Post-LN架构中残差连
接的恒等通路被"截断"，从而在反向传播时某些方向的梯度被完全抹除。相比之下，Pre-LN
架构通过将恒等映射置于最外层，保证了梯度在所有方向上的正下界。本文的分析为实践中
观察到的 Post-LN训练不稳定现象提供了严格的数学解释。
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1 预备知识与符号约定

1.1 基本符号

设 d ∈ N为隐藏层维度。我们约定如下符号：

• 所有向量均为列向量，x ∈ Rd；1 = (1, 1, . . . , 1)⊤ ∈ Rd表示全 1向量。

• I ∈ Rd×d表示单位矩阵；A⊤表示矩阵转置。

• ⊙表示 Hadamard积（逐元素乘法）；diag(v)表示对角矩阵。

• 对于可微映射 f : Rd → Rd，记其在点 x 处的 Jacobian 矩阵为 Jf (x) ∈ Rd×d，其中
(Jf (x))ij =

∂fi
∂xj
。

• rank(A)、tr(A)分别表示矩阵 A的秩和迹。

• ker(A)表示矩阵 A的零空间；Im(A)表示其像空间。

• span{v1, . . . , vk}表示向量组的线性张成空间。

• ∥ · ∥2表示欧几里得范数；∥ · ∥表示矩阵的算子范数（谱范数）。

• σmin(A)和 σmax(A)分别表示矩阵 A的最小和最大奇异值。

• o(ϵ)表示高阶无穷小项。

1.2 LayerNorm的定义

定义 1.1 (LayerNorm). LayerNorm映射 LN : Rd → Rd定义为

LN(z) =
z − µ(z)1

σ(z)
, (1)

其中均值函数 µ : Rd → R和标准差函数 σ : Rd → R>0定义为

µ(z) =
1

d

d∑
i=1

zi =
1

d
1⊤z, (2)

σ(z) =

√√√√1

d

d∑
i=1

(zi − µ(z))2 =

√
1

d
∥z − µ(z)1∥22. (3)

注记 1.2. 在实际实现中，LayerNorm通常还包含可学习的仿射参数 γ, β ∈ Rd，即

LNγ,β(z) = γ ⊙ LN(z) + β, (4)

其中 ⊙表示 Hadamard积。这对 Jacobian的影响仅是右乘对角矩阵 diag(γ)，不改变零空间的结
构，故我们先分析不含仿射参数的情况。

1.3 Post-LN与 Pre-LN的结构

定义 1.3 (Post-LN层). 设 F : Rd → Rd为子层映射（Attention或前馈网络）。Post-LN层定义为

y = LN(x+ F (x)). (5)

定义 1.4 (Pre-LN层). Pre-LN层定义为

y = x+ F (LN(x)). (6)
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2 LayerNorm的 Jacobian分析

2.1 Jacobian的显式计算

引理 2.1 (LayerNorm的 Jacobian). 设 z ∈ Rd 满足 σ(z) > 0。则 LayerNorm在 z 处的 Jacobian矩
阵为

JLN(z) =
1

σ(z)

(
I − 1

d
11⊤ − 1

d
ẑẑ⊤

)
, (7)

其中 ẑ = z−µ(z)1
σ(z) = LN(z)是标准化后的向量。

Proof. 我们分步计算。令 z̄ = z − µ(z)1（去均值后的向量），则 LN(z) = z̄/σ(z)。

步骤 1：计算 ∂µ
∂z

由 µ(z) = 1
d1

⊤z，直接得
∂µ

∂z
=

1

d
1⊤ ∈ R1×d. (8)

步骤 2：计算 ∂z̄
∂z

由 z̄ = z − µ(z)1，利用乘积法则：

∂z̄

∂z
= I − 1

∂µ

∂z
= I − 1

d
11⊤. (9)

记这个矩阵为 P = I − 1
d11

⊤。注意 P 是到 1⊥（与 1正交的子空间）的正交投影矩阵。

步骤 3：计算 ∂σ
∂z

由 σ(z)2 = 1
d∥z̄∥

2
2 =

1
d z̄

⊤z̄，对两边关于 z求导：

2σ
∂σ

∂z
=

2

d
z̄⊤

∂z̄

∂z
=

2

d
z̄⊤P. (10)

由于 P 是对称矩阵且 P z̄ = z̄（因为 z̄已经去均值，属于 1⊥），我们有 z̄⊤P = z̄⊤。因此

∂σ

∂z
=

1

dσ
z̄⊤ =

1

d
ẑ⊤, (11)

其中最后一步用了 ẑ = z̄/σ。

步骤 4：组合得到 JLN

由 LN(z) = z̄/σ，利用商法则：

JLN(z) =
∂

∂z

( z̄

σ

)
=

1

σ

∂z̄

∂z
− z̄

σ2

∂σ

∂z
(12)

=
1

σ
P − σẑ

σ2
· 1
d
ẑ⊤ (代入z̄ = σẑ) (13)

=
1

σ
P − 1

d
ẑẑ⊤ (14)

=
1

σ

(
I − 1

d
11⊤ − 1

d
ẑẑ⊤

)
. (15)

这完成了证明。 ■
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2.2 零空间的刻画

定理 2.2 (LayerNorm Jacobian的零空间). 对任意 z ∈ Rd（满足 σ(z) > 0），有

ker(JLN(z)) = span{1, ẑ}, (16)

其中 ẑ = LN(z)。特别地，由于 1与 ẑ正交（因 1⊤ẑ = 0），它们线性无关，故 dim(ker(JLN(z))) = 2，
进而由秩-零化度定理得 rank(JLN(z)) = d− 2。

Proof. 由引理 2.1，JLN(z) =
1
σ (I −

1
d11

⊤ − 1
d ẑẑ

⊤)。由于 σ > 0，零空间完全由括号内的
矩阵决定。
令M = I − 1

d11
⊤ − 1

d ẑẑ
⊤，我们需要找到所有满足条件的 v，使得Mv = 0。

验证 1 ∈ ker(M)

M1 = 1− 1

d
11⊤1− 1

d
ẑẑ⊤1. (17)

由于 1⊤1 = d，第二项为 1。由于 ẑ = LN(z)满足 1⊤ẑ = 0（标准化后均值为零），第三项
为 0。因此M1 = 1− 1− 0 = 0。

验证 ẑ ∈ ker(M)

Mẑ = ẑ − 1

d
11⊤ẑ − 1

d
ẑẑ⊤ẑ. (18)

第二项：由于 1⊤ẑ = 0，此项为 0。第三项：由于 ẑ⊤ẑ = ∥ẑ∥22 = d（标准化后方差为 1，即
1
d∥ẑ∥

2 = 1），此项为 ẑ。因此Mẑ = ẑ − 0− ẑ = 0。

验证 1和 ẑ线性无关
由于 1⊤ẑ = 0，它们正交，故线性无关。

验证 ker(M)恰为二维
矩阵M 可以写成

M = I − 1

d
(11⊤ + ẑẑ⊤). (19)

令Q = 1
d(11

⊤+ ẑẑ⊤)。由于 1和 ẑ正交且 ∥1∥2 = d、∥ẑ∥2 = d，矩阵Q是到 span{1, ẑ}的
正交投影。因此M = I −Q是到 span{1, ẑ}⊥的正交投影，其零空间恰为 span{1, ẑ}。 ■

注记 2.3. 定理 2.2表明 LayerNorm的 Jacobian是一个秩为 d− 2的矩阵，其零空间由两个正交方
向张成：全 1向量 1（对应均值方向）和标准化后的向量 ẑ（对应输出方向）。这是 LayerNorm
操作的内在几何性质。

3 Post-LN的梯度分析

3.1 Jacobian的结构

引理 3.1 (Post-LN的 Jacobian). 设 Post-LN层为 y = LN(x+ F (x))，令 z = x+ F (x)。则从输入
x到输出 y的 Jacobian为

J (Post)(x) = JLN(z) · (I + JF (x)). (20)
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Proof. 这是链式法则的直接应用。定义复合映射：

• g(x) = x+ F (x)，则 Jg(x) = I + JF (x)；

• h(z) = LN(z)，则 Jh(z) = JLN(z)；

• y = h(g(x))。

由链式法则：
J (Post)(x) = Jh(g(x)) · Jg(x) = JLN(z) · (I + JF (x)). (21)

■

3.2 秩的退化

定理 3.2 (Post-LN Jacobian的秩上界). 对任意 x和任意可微子层 F，有

rank(J (Post)(x)) ≤ d− 2. (22)

Proof. 由矩阵乘积的秩不等式：对任意矩阵 A,B，有

rank(AB) ≤ min(rank(A), rank(B)). (23)

由定理 2.2，rank(JLN(z)) = d− 2。因此

rank(J (Post)(x)) = rank(JLN(z) · (I + JF (x))) ≤ rank(JLN(z)) = d− 2. (24)

■

定理 3.3 (秩-零化维数定理). 对于矩阵M ∈ Rd×d，其核空间与秩满足

dim(ker(M)) + rank(M) = d. (25)

定义 3.4 (非平凡零空间). 设 M ∈ Rm×n。若 ker(M) ̸= {0}，则称 M 的零空间为非平凡的
（non-trivial），等价地，dim(ker(M)) ≥ 1。

推论 3.5 (Post-LN Jacobian的零空间非平凡). 由定理 2.2及定理 3.3可知，对于任意输入 x，Post-LN
层的 Jacobian J (Post)(x)的核空间至少有两个维度：

dim(ker(J (Post)(x))) ≥ 2. (26)

这意味着存在至少两个线性无关的方向 v1, v2 ∈ Rd，使得 J (Post)(x)vi = 0，即沿这些方向的梯
度信息无法通过该层传播。

3.3 梯度消失方向的刻画

定理 3.6 (Post-LN的梯度消失方向). 设 z = x+ F (x)，ẑ = LN(z)。则对任意向量 w ∈ Rd，有

J (Post)(x) · w = 0 ⇐⇒ (I + JF (x))w ∈ span{1, ẑ}. (27)
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Proof. 由定理 2.2，ker(JLN(z)) = span{1, ẑ}。于是

J (Post)(x) · w = JLN(z) · (I + JF (x)) · w = 0 (28)

当且仅当
(I + JF (x))w ∈ ker(JLN(z)) = span{1, ẑ}. (29)

■

注记 3.7 (梯度消失的几何解释). 定理 3.6揭示了 Post-LN梯度消失的几何机制：若输入扰动 w经
过残差连接和子层后，其像 (I + JF (x))w恰好落在 LayerNorm的"盲区"——均值方向 1和标准
化输出方向 ẑ 张成的二维子空间，则该方向的梯度信息会被 LayerNorm完全过滤，无法继续向
前传播。这一结构性缺陷在多层堆叠时会持续存在，导致训练不稳定。

4 Pre-LN的梯度分析

4.1 Jacobian的结构

引理 4.1 (Pre-LN的 Jacobian). 设 Pre-LN层为 y = x+F (LN(x))。则从输入 x到输出 y的 Jacobian
为

J (Pre)(x) = I + Jh(g(x)) · Jg(x) = I + JF (LN(x)) · JLN(x). (30)

4.2 最小奇异值的下界

在深度网络中，Jacobian矩阵 J ∈ Rd×d描述了输出向量 y对输入向量 x的局部线性映射：

y ≈ Jx 在输入 x0附近.

定义 4.2 (奇异值分解). 任意矩阵 J ∈ Rd×d都可以进行奇异值分解（SVD）：

J = UΣV ⊤,

其中 U, V ∈ Rd×d是正交矩阵，Σ = diag(σ1, . . . , σd)，且 σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0为 J 的奇异值。

注记 4.3 (奇异值与梯度变化). 设输入的扰动方向为 v ∈ Rd，则线性近似下输出的变化为

δy = Jv = UΣV ⊤v.

若令 v = V ei（ei为标准基向量），则

δy = UΣV ⊤(V ei) = UΣei = σiUei.

由于 U 是正交矩阵，有

∥δy∥ = ∥σiUei∥ = σi∥Uei∥ = σi∥ei∥ = σi.

同时，∥v∥ = ∥V ei∥ = ∥ei∥ = 1，因此

∥δy∥ = σi∥v∥.

即梯度沿 v = V ei方向被放大或缩小的比例正好为奇异值 σi。
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引理 4.4 (Weyl不等式的推论). 对任意矩阵 A ∈ Rd×d，其算子范数定义为 ∥A∥ = σmax(A)，则有

σmin(I +A) ≥ 1− ∥A∥, (31)

其中 σmin(·)表示最小奇异值。

Proof. 我们使用 Weyl不等式的奇异值形式。对于一般矩阵，经典 Weyl不等式的推广表
明：对任意 B,C ∈ Rd×d，

σi(B + C) ≥ σi(B)− σmax(C), i = 1, . . . , d. (32)

推导思路：不等式 eq. (32)可由对称矩阵特征值的Weyl不等式推出。关键观察是：任意矩
阵M 的奇异值 σi(M)等于对称矩阵M⊤M 的特征值的平方根，即 σi(M) =

√
λi(M⊤M)。

通过对 (B + C)⊤(B + C)、B⊤B、C⊤C 应用对称矩阵的Weyl特征值不等式

λi(H1 +H2) ≥ λi(H1) + λd(H2), (33)

并利用矩阵范数与奇异值的关系 ∥C∥ = σmax(C)，即可得到 eq. (32)。

应用到本引理：取B = I、C = A、i = d，由于单位矩阵的所有奇异值为 1，即 σd(I) = 1，
代入 eq. (32)得

σmin(I +A) = σd(I +A) ≥ σd(I)− ∥A∥ = 1− ∥A∥. (34)

■

注记 4.5 (Pre-LN 梯度稳定性). 从直观上看，矩阵 I + A 可以被视为恒等映射加上一个非线性
扰动 A。Weyl不等式保证，只要扰动的算子范数 ∥A∥不超过 1，最小奇异值不会归零。这正体
现了 Pre-LN结构中残差连接对梯度的保护作用：无论网络深度如何堆叠，只要每层扰动满足
∥A(ℓ)∥ < 1，整体 Jacobian仍然满秩，梯度沿每个方向均有正下界。

定理 4.6 (Pre-LN的梯度下界). 考虑 Pre-LN层 y = x+ F (LN(x))。由引理 4.1，其 Jacobian为

J (Pre)(x) = I + JF (LN(x)) · JLN(x).

定义 A(x) = JF (LN(x)) · JLN(x)，则 J (Pre)(x) = I + A(x)。若算子范数满足 ∥A(x)∥ < 1，则
由引理 4.4，Jacobian的最小奇异值满足

σmin(J
(Pre)(x)) ≥ 1− ∥A(x)∥ > 0. (35)

这一正下界保证了以下性质：

(i) 满秩性：J (Pre)(x)是可逆的，ker(J (Pre)(x)) = {0}。

(ii) 梯度保持：对任意非零向量 w ∈ Rd，有

∥J (Pre)(x) · w∥ ≥ σmin(J
(Pre)(x))∥w∥ ≥ (1− ∥A(x)∥)∥w∥ > 0, (36)

即梯度在所有方向上均有正的下界，不存在梯度完全消失的方向。
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Proof. 由引理 4.1，J (Pre)(x) = I +A(x)，其中 A(x) = JF (LN(x)) · JLN(x)。
由引理 4.4（Weyl不等式）：

σmin(I +A(x)) ≥ 1− ∥A(x)∥. (37)

若 ∥A(x)∥ < 1，则 σmin(J (Pre)(x)) > 0，因此 J (Pre)(x)可逆，从而 ker(J (Pre)(x)) = {0}。
对任意 w ̸= 0，由奇异值的定义：

∥J (Pre)(x)w∥ ≥ σmin(J
(Pre)(x))∥w∥ ≥ (1− ∥A(x)∥)∥w∥ > 0. (38)

■

5 Post-LN与 Pre-LN的对比总结

Post-LN与 Pre-LN的主要区别体现在每一层的 Jacobian结构及其对梯度传播的影响，各项结构
性差异和梯度性质的对比总结如表格 1所示。

表格 1: Post-LN与 Pre-LN的结构性对比
性质 Post-LN Pre-LN

Jacobian形式 JLN(z) · (I + JF (x)) I + JF (LN(x)) · JLN(x)

恒等通路 I 的位置 被 JLN左乘 直接加在最外层

秩的上界 ≤ d− 2 = d（在 ∥A∥ < 1时）

零空间维度下界 ≥ 2 = 0（在 ∥A∥ < 1时）

梯度完全消失的方向 存在（至少 2个独立方向） 不存在

6 补充：多层堆叠网络的 Jacobian分析

6.1 局部线性化的理论基础

在分析多层网络时，我们采用局部线性化近似（local linearisation approximation）。这一方法的理
论依据如下：

假设 6.1 (局部线性化假设). 设可微映射 g : Rd → Rd在点 x0处的一阶泰勒展开为

g(x0 + δx) = g(x0) + Jg(x0)δx+ o(∥δx∥), (39)

其中 Jg(x0)是 Jacobian矩阵，o(∥δx∥)表示高阶无穷小项满足

lim
∥δx∥→0

∥o(∥δx∥)∥
∥δx∥

= 0. (40)

在分析梯度传播时，我们关注的是 Jacobian矩阵 Jg(x0)的性质，它刻画了函数在 x0附近的局部
线性行为。
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注记 6.2 (多层复合的线性化). 对于 L层网络 x(L) = f (L) ◦ · · · ◦ f (1)(x(0))，设第 ℓ层在点 x(ℓ−1)

处的 Jacobian为 J (ℓ) = Jf (ℓ)(x(ℓ−1))。由链式法则，从输入到输出的 Jacobian为

∂x(L)

∂x(0)
= J (L) · · · J (1) =

L∏
ℓ=1

J (ℓ). (41)

6.2 L层 Post-LN的 Jacobian

定理 6.3 (L层 Post-LN的 Jacobian). 设 L层 Post-LN网络，第 ℓ层的输出为

x(ℓ) = LN(x(ℓ−1) + F (ℓ)(x(ℓ−1))). (42)

记局部线性化 Jacobian为

J (ℓ) =
∂x(ℓ)

∂x(ℓ−1)
= JLN(z

(ℓ)) · (I + JF (ℓ)(x(ℓ−1))), z(ℓ) = x(ℓ−1) + F (ℓ)(x(ℓ−1)). (43)

则从 x(0)到 x(L)的 Jacobian为矩阵乘积

J (1:L) =
L∏

ℓ=1

J (ℓ) =
L∏

ℓ=1

JLN(z
(ℓ)) · (I + JF (ℓ)(x(ℓ−1))). (44)

由矩阵乘积的秩不等式 rank(AB) ≤ min(rank(A), rank(B))以及单层 Post-LN Jacobian的秩上界
（定理 3.2：rank(J (ℓ)) ≤ d− 2），有

rank(J (1:L)) ≤ min
ℓ=1,...,L

rank(J (ℓ)) ≤ d− 2. (45)

因此，无论堆叠多少层，Post-LN网络至少存在 2个梯度被完全抹除的方向。

6.3 L层 Pre-LN的 Jacobian

定理 6.4 (L层 Pre-LN的 Jacobian). 设 L层 Pre-LN网络，第 ℓ层的输出为

x(ℓ) = x(ℓ−1) + F (ℓ)(LN(x(ℓ−1))). (46)

在局部线性化近似下，定义

A(ℓ) = JF (ℓ)(LN(x(ℓ−1))) · JLN(x
(ℓ−1)), J (ℓ) = I +A(ℓ), J (1:L) =

L∏
ℓ=1

J (ℓ). (47)

若对所有 ℓ有 ∥A(ℓ)∥ < 1，则每层 Jacobian满秩，且

σmin(J
(1:L)) ≥

L∏
ℓ=1

σmin(I +A(ℓ)) ≥
L∏

ℓ=1

(1− ∥A(ℓ)∥) > 0. (48)

因此，即使网络很深，Pre-LN的梯度在任意方向上都不会被完全抹除，保证了梯度下界。

Proof. 由局部线性化的乘积公式 J (1:L) =
∏L

ℓ=1(I + A(ℓ))，每个因子 (I + A(ℓ))的最小奇
异值满足 σmin(I +A(ℓ)) ≥ 1− ∥A(ℓ)∥（引理 4.4）。奇异值乘法性质保证

σmin
( L∏

ℓ=1

(I +A(ℓ))
)
≥

L∏
ℓ=1

σmin(I +A(ℓ)) ≥
L∏

ℓ=1

(1− ∥A(ℓ)∥) > 0, (49)

当 ∥A(ℓ)∥ < 1对所有 ℓ成立时。由 σmin(J (1:L)) > 0可知 J (1:L) 满秩，梯度在任意方向上
均非零。 ■
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7 结论

本文从线性代数的角度严格分析了 Post-LN与 Pre-LN Transformer架构的梯度传播性质。核心推
断可概括如下：

1. LayerNorm的 Jacobian结构：

ker(JLN(z)) = span{1, ẑ}, dim(ker(JLN(z))) = 2,

即 LayerNorm的 Jacobian在均值方向 1和标准化输出方向 ẑ上具有二维零空间。这一内在
几何性质是后续分析的基础。

2. Post-LN与 Pre-LN的结构性差异：

• 在 Post-LN中，LayerNorm作用于残差连接之后，整层 Jacobian为

J (Post)(x) = JLN(z) · (I + JF (x)),

由于左乘 JLN(z)，恒等通路被 LayerNorm的零空间"过滤"，导致整层 Jacobian秩满足

rank(J (Post)) ≤ d− 2,

即至少存在两个方向的梯度在该层被完全消除。

• 在 Pre-LN中，LayerNorm作用于子层输入，整层 Jacobian为

J (Pre)(x) = I + JF (LN(x)) · JLN(x),

恒等映射 I 位于最外层，未被 LayerNorm影响。若 ∥JF (LN(x)) · JLN(x)∥ < 1，则

σmin(J
(Pre)(x)) ≥ 1− ∥JF (LN(x)) · JLN(x)∥ > 0,

保证 Jacobian满秩，梯度在所有方向上均有正下界。

3. 实践启示：Post-LN架构中 LayerNorm的零空间直接导致整层梯度退化，这解释了其训练
不稳定性（需要小学习率、warm-up、对深度敏感）。相比之下，Pre-LN通过将恒等映射置
于外层，避免了零空间的传播，使其更适合深层网络训练。
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